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Hydrogen in Metallic Alloys as an Example of a Lattice
Gas with Random Field and Random Bonds
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We present evidence that hydrogen dissolved in metallic alloys can be considered as a realization
of a lattice gas with a random internal field and random bonds. The predictions of this model are in
good agreement with experimental phase diagrams and results of diffuse x-ray scattering from mi-
croscopic density fluctuations of hydrogen in Nbl „Mo„alloys.

PACS numbers: 05.50.+q, 64.60.Cn

Hydrogen in metals belongs to a class of non-
stoichiometric compounds where highly mobile parti-
cles move in the periodic potential of a host lattice. '

The microscopic description of hydrogen in pure met-
als leads to a Hamiltonian of a deformable lattice gas
as proposed by Alefeld. This was further deve1oped
theoretically by Wagner and Horner who showed how
bulk properties of hydrogen in metals are influenced
by boundary conditions at the surface because of
long-ranged elastic interactions. As a consequence,
the coherent phase transitions depend on the shape of
the sample. 4

In this Letter we show that hydrogen (H) in metallic
alloys can be treated as a lattice gas subjected to a ran-
dom internal field and with random bonds. The disor-
der which is naturally present in alloys strongly influ-
ences the H-H interaction and, thereby, the phase
transitions of dissolved hydrogen. The theoretical
concept is guided by theories originally developed for
disordered magnetic systems or spin-glasses. 5 In this
context we may also discuss those particular models
which consider only the trapping of hydrogen at de-
fects. 6

The interaction of hydrogen in metals is usually di-
vided into an electronic and an indirect elastic interac-
tion. The elastic interaction W,b between hydrogen
atoms on interstitial sites a and b can be calculated via
the lattice Green's function G;k" and the forces f '
and f"~ acting between the hydrogen and the metal
atoms on lattice sites m and n by the following expres-
sion

W gfmaGmnf nb

i, k
m, n

In a binary alloy 3
& „B„the lattice Green's function

is subject to fluctuations, at least for microscopic dis-
tances R —R„. Moreover, the force f ' depends on
the type of metal atom sitting at R . The interaction
N, b is therefore no longer translationally invariant in
an alloy but depends on the configuration of the sur-
roundings of the ah pair. Deviations from the con-
figurational average ( W, t, ) lead to random bonds in
the lattice-gas Hamiltonian. The screened Coulombic

interaction between the protons, which is also impor-
tant for the phase transitions, is probably also subject
to disorder but it is not possible to formulate it in a
simple way.

Perhaps more important than the disturbed interac-
tion is the disorder in the self-energy of the dissolved
hydrogen whose elastic part can be obtained from Eq.
(1) by setting a = b. In an alloy this is in general dif-
ferent from site to site depending again on the confi-
guration of the neighboring metal atoms. For exam-
ple, hydrogen can be trapped at sites near certain
atoms with a strong attractive interaction. Deviations
of the self-energy from the configurational average
( W,, ) may be described in the lattice-gas Hamiltonian
by a random field, h„ to yield the expression

H = ——,
' g (( W, t, ) + b 8;t, )~n~i, —gh, ~n, (2)

a~b

where ~ = 0, 1 is the occupation number of an intersti-
tial site. In most cases the mobility of the metal atoms
is many orders of magnitude lower than the mobility
of the protons at the same temperature. The random
bonds and the random field can, therefore, be con-
sidered as frozen in. From the spatial distribution of
the 3 and B atoms one gets the probability distribu-
tions Pu. (4 W,'t, ) and Ph(h, ). As one impurity atom
interacts with a set of neighboring interstitial sites the
random bonds and the random field are correlated
within this set. After performing a transformation to
spin variables in Eq. (2) we arrive at a Hamiltonian for
an Ising model with random bonds and random field.
From theories of disordered spin models5 one knows
that the most obvious change is the lowering of the
critical temperature with increasing amount of disor-
der. Inspection of experimental results for hydrogen
in alloys provides a general confirmation of this predic-
tion. However, these experiments were not per-
formed with the special considerations described here.

For our experiments we have chosen hydrogen in
niobium-molybdenum alloys for several reasons: (i)
The phase diagram of hydrogen in pure niobium is
well known and its topology bears a great resemblance
to that of a real gas-liquid system'0; (ii) the elements
niobium and molybdenum form a continuous series of
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FIG. 1. Phase diagrams of hydrogen in Nb (solid curve,
Ref. 10), Nbo95Mooo5 (dash-dotted curve), and Nbo9Moo t

(dashed curve).

solid solutions with a body-centered cubic structure;
and (iii) many of their solid-state properties can be
found in the literature, e.g. , elastic constants, " pho-
non dispersion, ' and electronic properties, '3 and these
are only slightly changed compared to pure niobium if
one adds a few atomic percent of mo1ybdenum.

We have determined portions of the phase boun-
daries of hydrogen in Nb& Mo„ for x = 0.05 and 0.1

by an x-ray diffraction method. ' We employed
single-crystal samples loaded in situ using spot-welded
Pd dots to introduce the hydrogen gas. ' Figure 1

shows that a small amount of Mo in Nb has a dramatic
effect on the o.-o.' phase transition of the dissolved hy-
drogen as suggested above. An attempt to explain
these changes simply by alteration of the elastic in-
teraction fails. ' The n'-P temperature is only slightly
lowered, probably because at high hydrogen concentra-
tions the phase transitions are governed by relatively
strong and short-ranged respulsive interactions.

Recently a Monte Carlo calculation' demonstrated
that our idea of a random field acting on the hydrogen
atoms leads to a good agreement between calculated
"incoherent" and measured phase diagrams of Fig. l.
In an experiment, however, the ideal incoherent phase
diagram can only be approximately determined be-
cause a complete coherency-free state is hard to
achieve in which the lattices of the two separated
phases, n and o.', meet at a strain-free incoherent
boundary. A physically more crucial quantity for test-
ing our theoretical concept is the compressibility of the
lattice gas. Its temperature dependence gives, in addi-
tion to the coherent spinodal temperatures, informa-
tion about the interaction of the dissolved hydrogen.
We therefore studied hydrogen density fluctuations by
a novel method which employs distortion-induced dif-
fuse x-ray scattering to probe the divergent hydrogen
density fluctuations. This may be contrasted with the
analogous spinodal determination of Munzing, Stump,
and Goeltz who studied temperature-dependent deu-

terium density fluctuations directly in NbI303 using
neutron small-angle scattering. '

In the present case of distortion-induced fluctua-
tions in the alloy crystals only the so-called microscop-
ic modes, which do not depend on the sample shape
and correspond to ordinary long-wavelength density
fluctuations in a liquid, contribute to the scattering
cross section. The diffuse x-ray scattering cross sec-
tion close to a Bragg peak (Huang diffuse scattering) is
given by'

d~/dII~ (lc(q) I') I& u(q) I'. (3)

u(q) is the Fourier transform of the displacement
field u(r) of a single hydrogen atom, K is the scatter-
ing vector, and q is the reduced wave vector.
(~c(q) ~ ) is the Fourier transform of the hydrogen
pair correlation (T Tt, ) (r ) (T b), where the average
( ) includes a time average as well as an average over
the distribution of the random field and random
bonds. In the case of a system with frozen disorder
the diffuse scattering does not only contain a contribu-
tion due to thermal fluctuations but also one due to
disorder-induced "frozen" fluctuations. We have es-
timated this additional contribution to the diffuse
scattering under our special conditions of temperature,
hydrogen concentration, and strength of disorder. It is
less than 10% and therefore we are sure that subtrac-
tion of these estimated "frozen" fluctuations intro-
duces, if at all, only a small error. For the thermal part
of (~c(q) ~ ) we expect a mean-field behavior for
small reduced wave vectors, ~q~ && 27r/ao, due to the
long-ranged part of the elastic interaction. The tem-
perature dependence is then given by

(4)

with T(q) as the spinodal temperature for the micro-
scopic density-fluctuation modes. ' Our measure-
ments had to be performed at temperatures above the
incoherent phase boundary in order to avoid in-
coherent precipitation. We obtain TL by extrapolating
the linear course of T/( ~r (q ) ~ ),„ to zero. Therefore,
we cannot decide whether the microscopic density
fluctuations actually diverge at TL or not. In Fig. 2 the
experimentally determined spinodal temperatures for
hydrogen in Nbo95Moo05, evaluated by means of Eq.
(4), are compared with those in pure niobium. They
show a shift towards lower temperatures corresponding
to the depressed phase boundaries of Fig. 1. However,
in contrast to the measurement and interpretation of
phase boundaries, we may now treat properties that are
derived for the homogeneous one-phase region.

In a second set of experiments we determined the
temperature-dependent scattering cross section in a
range of reduced wave vectors from 1 to 8 nm ' near
the (330) Bragg peak for two different alloys,
Nbo 99Moo 0~ and Nbo 97Moo o3, and a hydrogen concen-
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FIG. 2. Spinodal temperatures of microscopic modes for
hydrogen in Nb from Ref. 20 (open triangles) and
Nbo95MO005 (open circles); dashed curves are guides to the
eye.

1.3
I

1.5 T/T,
tration of c =0.31 H/(Nb+Mo) corresponding to the
critical concentration of the 0.-0.' transition. In Fig.
3(a) the inverse compressibility calculated from Eq.
(3) and with use of the thermodynamic relation's

KT '(q) = c'EaT/ Vo( i c (q) i'),„,

where Vp is the volume of a metal atom, is plotted
versus the temperature for iqi = 1 nm '. At this
value of q the displayed results are nearly identical
with the long-wavelength limit of lr. T (q). Figure
3(b) shows the inverse susceptibility of an Ising model
with random field calculated from a high-temperature
series expansion. ' The calculations assume nearest-
neighbor interactions on a bcc lattice and a Gaussian
distribution of the random field. The experimental
results show the same parallel shift as the theoretical
values with increasing disorder, which indicates a de-
crease in thermal fluctuations due to the random field.
For a quantitative comparison a multiplicative scale
factor of about 2 must be applied to the ordinate of
Fig. 3(b) because the mean occupation number at the
critical concentration of our system is considerably
smaller than the value of —,

' required by the transfor-
mation from spin variables to occupation numbers. In
the Nbp97Mopp3 alloy the spinodal temperature TI is
changed by about —15% relative to pure Nb. The
same relative change is obtained in the lattice-gas
model on the assumption of a Gaussian-distributed
random field with a standard deviation a- = 26 meV.

Actually the random field is created by the repulsive
interaction of Mo and H in Nb. Computer calculations
showed that this leads to a random field which can be
described by several Gaussian distributions. ' The

FIG. 3. (a) Inverse compressibility for microscopic hydro-
gen density-fluctuation modes in Nb099Mooot (filled trian-
gles) and Nb097Mo003 (open circles). Dimensionless units
have been chosen for comparison with (b); to convert to

0 3
normal units (eV/A ) multiply by 0.15. (b) Inverse suscep-
tibility of an Ising model with random field after Ref. 21; the
standard deviation of the Gaussian distribution is denoted
by s = o-/kT, and both axes are scaled by the critical tem-
perature of the pure system. Indicated as well (dashed
curve) is the inverse susceptibility of an Ising model with
infinite-ranged interaction after Ref. 22.

average of their standard deviations weighted with the
peak height gives a value of o-=17 meV. This is of
the same order of magnitude as the above value o- and
can be eventually improved by including the effect of
random bonds. We have also included in Fig. 3(b) the
results of an exact calculation of XT ' under the as-
sumption of infinite-ranged (constant) interactions
normalized per spin. This calculation represents the
other extreme from the nearest-neighbor case and our
results should in principle lie within the range covered
by these two extremes.
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