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Classical Hard-Sphere Fluid in Infinitely Many Dimensions
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The equation of state of the fluid phase of the classical hard-sphere system in infinitely many
dimensions has been obtained exactly. Only the first two virial coefficients are nonvanishing. The
upper bound for the coefficients of the Mayer series for nonnegative interaction potentials is
reached by this system.

PACS numbers: 05.20.—y, 64.30.+t, 64.70.—p

Hard spheres' provide a useful model for fluids at sufficiently high temperatures and possibly their transitions to
solids. Despite its apparent simplicity, this model has not been solved. However, as we will show in this Letter,
considerable simplifications occur in the limit of infinitely many space dimensions, and we are able to give an
equation of state for the thermodynamic properties of the hard-sphere fluid.

For any finite dimension D, the grand partition function for the system of hard spheres can be written as a
power series in the activity z = A Dexp(pP) [A = (h /27r mkT)'I, P = 1/kT and p, is the chemical potential] as

OO n== g (z"/n!) dDx„dDx„
n=o i(j[1—O(o. —~x; —x, ~) ] = exp(PpV)

in the thermodynamic limit. In (1), n is the diameter of the hard sphere, 0 is the Heaviside unit step function, p
is the pressure, and Vis the volume of the system. The linked-cluster theorem then yields'2 the Mayer series

pV/kT= v X b„z",
n=1

(N) = v X nb„z",
n=1

(2)

where (N) is the expected number of hard spheres. The b„are the sum of all possible connected graphs on n la-

beled points multiplied by their respective weights [which are integrals over the O(o. —~x; —x, ~)'s]. The natural
scale of volume is v =7rD 2aD/I (1+ —,

' D), the volume of a sphere of radius a. The Mayer series (2) has the alter-
nating bond property, ( —1)" 'b„» 0, as befits repulsive intersphere poteritials.

The crucial observation is that as D ~ the evaluation of the b„s requires only the contribution of tree dia-
grams. Contributions from other diagrams containing one or more loops are smaller by a factor of (I/JD )n
n ——4/3'lz & 1. This is because v/aD 0 and the cross section between spheres vanishes in the limit D
Thus one finds, ' using the number of labeled tree graphs of order n, n"

pv/kT = —g (n" /n!) ( —zv) "[1+0 ((I/JD ) (4/3 )D) ]
n=1

(3)

pv= — g (n" '/n!) ( —zv) "[1+0((I/JD ) (4/3' ')D) ],
n=1

(4)
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with p the number density. For D ~, the radius of
convergence of these series is zu = 1/e. For
0 & zu & e ' one finds, on reversion of (4) and sub-
stitution in (3) (see Ref. 1, Chap. 8), that

pve~" = zv.

This equation yields

d(pv)/d(zv) = e ~" /(1+ pv),

(6)

whereas the Mayer series (3) and (4) imply that
zu d(pu/kT)/d(zv) = pv, and thus

d (pu/kT)
d(pu)

Combining these two expressions with Eq. (6), we ob-
tain d(pu/kT)/d(pu) = 1+pv, and hence (5).

Although the equation of state (5) is analytic, the
original series (3) and (4) have a singularity at
zu = —1/e. Notwithstanding the fact that the implicit
equation (6) has more than one root outside the circle
of convergence of the Mayer series ~zv

~
e = 1, an ana-

lytic continuation of the series can be performed as
follows. The Mayer coefficients are well approximated
and bounded by Stirling's approximation, n" '/
n! & e"(2m) 'i2n 3i2. The approximate series,

pu ———(2m)
n=1

P (2 )-ti2 ~

p/p kT = 1+ —,
' v p.

Higher-order virial coefficients vanish identically at
D=oo.

Specifically, one can show that, for ~zv~ & 1/e, the
Mayer series (4) is the unique root of the implicit
equation (in p)5

The simple form of the equation of state (5) is due
to fluctuations becoming less important as the dimen-
sionality of the system increases. Indeed, the mean-
field theory of critical phenomena becomes exact
above the upper critical dimension (which is 4 for
fluids), for the same reason. The decreasing impor-
tance of fluctuations as D ~, together with a finite
nontrivial virial coefficient in Eq. (5), suggest the
presence of a phase transition, despite the lack of any
premonition in the fluid phase. The precise structure
of a sufficiently dense solid phase in the D = ~ hard-
sphere system is unknowns (only bounds9 are known),
so that neither the solid branch of the equation of
state, nor nucleation into the solid phase, can be
studied independently.

We note that the space-filling density, by which the
pressure must have diverged, is infinite as D = ~,
since v/aD 0 as D ~. Thus, the so-called "ran-
dom close packing" divergence'o occurs at pv = ~ for
D = ~, as do the Rogers bounds for dense packing of
spheres. 9 On the other hand, hypercubic [pv
=u(2a) D] and body-centered hypercubic densities
are vanishingly small, well within the fluid phase, and
below the density and pressure corresponding to the
radius of convergence of the Mayer series

(pv)'= (2~) -'i'~(-') = 0 305

(p /kT)' = (2 ) 'i q ( —,') = 0.346,

where q ( s) = —g „=~ ( —n ) ' is the modified
Riemann zeta function. Note that (p/pkT)'= 1.134 is
only one order of magnitude below the value at which
computer simulations in three (and two) dimensions
indicate a phase transition. 7

A general theorem for hard-sphere systems gives
bounds for the Mayer coefficients,

(which have the same radius of convergence, and the
same divergence at zue = —1 as the original series),
can be analytically continued in the complex z plane,
cut along —~ & z & —1/ev, by use of Appell's in-
tegral

( —zev)" zev I' t'i
dtI'(3/2) "0 e'+ zev

which is an analytic function of z everywhere in the cut
complex z plane. We conclude that there are no
premonitory signs of a phase transition in the fluid
phase described by the Mayer series (3) and (4) or the
equation of state (5). This is, however, not sufficient
to rule out a phase transition in the D =~, classical
hard-sphere system. Computer simulations have es-
tablished the existence of a first-order phase transition
for D =3.7

and, accordingly, for the radius of convergence of the
Mayer series. Our classical system of hard spheres at
D = ~ realizes the upper bound [or the lower bound
for the radius of convergence R, which is also related
to that of the finite-volume Mayer expansion,
R( V) ~ R =limz R( V) "'2]. The lower bound is
realized by the Ford model, '3 a grand partition func-
tion constructed ad hoc as an example of the Yang-Lee
phase transition, '4 and for which no physical potential
has been found. In the Ford model, no pressure maxi-
ma have been obtained by Pade-approximant analysis
of the virial series, indicating the failure of the equa-
tion of the fluid phase to supply any information about
the condensed phase, ' exactly as in the present D = ~
hard-sphere model.

Although the classical D =~ hard-sphere fluid is
nonideal [finite second virial coefficient in Eq. (5)], its
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quantum mechanical counterpart behaves like an ideal
Bose gas at low temperatures, 4 with a Bose-Einstein
condensation.
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