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Critical Ising Spin Dynamics on Percolation Clusters
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Ferromagnetically interacting Ising spins are placed on a fractal network (such as a critical per-
colation cluster) with T, = 0, and endowed with a single-spin-flip dynamics. At low temperatures
the collective dynamics is determined by thermal activation over energy barriers. The barrier to
overturning of the spins in a domain of size L is proportional to Z lnL, where Z is a new geometri-
cal parameter characterizing the fractal. A new "singular" dynamic scaling is found in which the
effective dynamic critical exponent diverges at criticality.

PACS numbers: 64.60.Ht, 05.50.+q, 75.40.Dy, 76.20.+q

In recent years, there has been much study of physi-
cal problems in a space which, instead of being Eu-
clidean, is a fractal lattice, such as a percolation clus-
ter. ' This has included the study of the equilibrium
properties of the ordering of spin systems —a problem
which is inherently nonlinear —and also of linear
dynamic problems, such as random walks, dielectric
response, elastic modes, and spin waves.

However, there had been no study of the critical
dynamics near the ordering temperature of a fractal
lattice, a nonlinear and dynamic phenomenon. Re-
cently, Aeppli, Guggenheim, and Uemura addressed
this problem by an inelastic neutron scattering experi-
ment on Rb2(Mgp4tCop59)F4 where the magnetic Co
ions are at percolation on a two-dimensional lattice.
They fitted a relaxation time r by the standard dynam-
ic scaling form, r (T) —$T(T)', with an exceptionally
large value of z (here gT is the thermal correlation
length). Very recently, theoretical approaches6 s 'p

have appeared which assume this form and then
proceed to obtain estimates of z.

In this Letter, I consider the behavior of ferromag-
netic Ising systems on finitely ramified fractal lattices,
such as the incipient infinite cluster in percolation
("percolation cluster" for short, or PC). Other exam-
ples are Sierpinski gaskets" or PC's on a Bethe lat-
tice. ' This analysis turns out to be unexpectedly sim-
ple since this system has a zero-temperature phase
transition and this means that the most divergent fac-
tors in r (T) can be derived by consideration of ther-
mal activation over energy barriers resulting from the
nonuniform geometry. As a function of the length
scale L„ the barrier E,„grows logarithmically:

E,„(L)/2J = Z lnL + const (as L oo). (1)

Here Z is a new, "universal" parameter of the fractal.
I also show that (1) implies a "singular" dynamic scal-
ing, in which r(T) diverges as exp(const/T ), faster
than any power of (T(T).

I start with a Hamiltonian describing classical Ising
spins Is; ) placed on the N sites of the PC in any dimen-
sion d ~ 2 with ferromagnetic nearest-neighbor cou-

plings J:
H = —J ass~.

&il&
(2)

The static critical behavior is known: Percolation clus-
ters are "finitely ramified, "2 so that T, =O. With a
temperature variable H=e, the thermal correla-
tion length' ' is given by

gr(T) —e ~ a —0 'a, (3)

where v~ is the percolation correlation-length expo-
nent and a is the lattice constant.

I assume a single-spin-flip (hence, spin-noncon-
serving) dynamics satisfying the usual detailed balance
condition, e.g. , Glauber dynamics'5: spins flip at a rate—e i rp ' (energy increased by AE) or
(energy decreased or unchanged by flip). Then
r (L, T) is defined as the typical (median-among-
realizations) lifetime of the slowest relaxing mode of a
piece H of PC with diameter L. ' The characteristic
time of the infinite system is 7 (T) = limL r(L, T)—.(g, , T).

The first task is to derive Eq. (1). Take L « g ( T) .
It follows that H spends most of its time in its two fer-
romagnetic ground states with occasional transitions
over the barrier separating them. Thus

(~ T') max (4)

where E,„(H) is an energy barrier —the highest en-
ergy on the lowest path connecting the ground states
of W in its configuration space. The entropy term in
the exponent of Eq. (4) can be neglected, compared to
E,„/T, as long as L « (T.

To evaluate E,„(H ), I will use the links-and-blobs
model of PC's'7 (see Fig. 1). The PC can be pictured
as a (contorted) chain of one-dimensional "links, " in-
terrupted by "decorations": multiply connected
"blobs" in the chain, or "dangling ends" extending
from it. The dangling ends and the blobs are made up
of similarly decorated chains in a self-similar fashion.

Overturning H corresponds to moving a domain
wall along the chain. On sections of purely one-

2030 1985 The American Physical Society



VOLUME 54, NUMBER 18 PHYSICAL REVIEW LETTERS 6 MAY 1985

{a)
ii

(b)

4—

C9 2—
LLI

Z
LLJ

4
'vc ~

I I

5 10 15
SP I Ns F L IP PE 0

20

&max(L) = I + &max(b

the solution of which is (1) with

Z = (Inb)

(6)

with threefold coordination, ' and I conjecture that it
is true for arbitrary clusters. The other optimal se-
quences are elaborations of such a sequence by tem-
porary backtracking, side excursions, or alternative
routes around states in the noncritical part (E & E,„)
of the sequence.

Let us make the scaling assumption that E,„(H)
depends only on the diameter L (H ). Then A' ' is the
subblob with the largest diameter I '. The Herrmann-
Stanley' subblob distribution law implies L, —b 'L, ,
where b & 1 is the typical ratio of diameters of a blob
to its largest subblob. Substituting into (5) yields

FIG. l. (a) Schematic representation of part of a percola-
tion cluster, showing one-dimensional links, dangling ends,
and a blob with substructure. A domain of up-spin is
spreading from the left. The spins are numbered according
to an optimal sequence for flipping of the cluster. The
bonds "violated" at the "worst" configuration in this se-
quence are shown slashed. (b) The energy as a function of
the number of spins flipped.

e,„(A ) = e,„(&') +1 (5)

(measuring energies in units of "violated" bonds,
e=E/2J). In (5), ~ ' is the overall "worst" of the
subblobs from both subchains. Note the implicit as-
sumption that, of the many optical flip sequences,
there is at least one in which each spin, once flipped,
never flips back. This property has been proved for
the Sierpinski gasket" and for PC's on a Bethe lattice

dimensional chain (e.g. , spins 1—3 in Fig. 1), the wall's

energy is independent of its position, and so it does a
random walk'8 with a rapid step rate —~q '. Howev-
er, moving the domain wall past a site where n & 2
bonds intersect (e.g. , spin 4 or 15) requires "violat-
ing" (n —2) additional bonds. Therefore, although
the static ordering depends on the links, '" the dynamics
is dominated by barriers due to the decorations. One
decoration can be completely overturned before the
wall reaches the next one, and so e,„ is the maximum
of the independent barriers of the decorations.

What happens to the barrier when length is re-
scaled? Consider a blob A' composed of two sub-
chains in parallel (see Fig. 1); a domain wall moving
across A need not advance along both subchains
simultaneously, but only one at a time. The overall
"worst" moment in the optimal sequence is when the
wall cuts a subchain at the "worst" point of its
"worst" subdecoration A ' (at A in Fig. 1) while cut-
ting the other subchain at one of its one-dimensional
links (such as B in Fig. 1). Thus

I have neglected the possiblity that A ' was a dan-
gling end, so that the above argument actually gives Z
for the backbone of the PC. ' In fact a rule similar to
(4) governs dangling-end barriers, ' and so (1) and (7)
should still hold for the full PC, with b(full
PC) & b(backbone).

The argument leading to (1) and (7) becomes exact
on deterministic self-similar networks, which are gen-
erated by stages in which each link is replaced by a
piece of decorated chain. In particular, b =3 for the
nonrandom "squig" (see Mandelbrot and Given, 2o

Fig. 2) which models the full PC in d =2 (b =3 for
the squig backbone, too) and b = 24i3 on a hierarchical
lattice modeling the PC backbone in d = 2. '

Furthermore, Eq. (1) is clearly a consequence of
hierarchical geometry and hence ought to hold on any
finitely ramified fractal lattice. It has been proved that
(1) holds for the Sierpinski gasket, "with Z = 1/2 ln2,
and for PC's on Bethe lattices, ' with Z = 2/ln2.
(Note that these lattices are, respectively, all blobs and
all dangling ends. ) In fact PC's in dimension d ~ 6
have the same geometry as PC's on Bethe lattices, '

and so (1) is essentially proved for PC's for d ~ 6.
The parameter Z for PC's is universal in that it

depends only on d. I emphasize that Z is not in general
a function of the Hausdorff (fractal)' or spectral (frac-
tion) dimensions, 3 4 or of the percolation exponents; it
seems to be yet another of the many geometrical
parameters needed to characterize a fractal. '

I have ignored the contribution of very rare but very
slowly relaxing compact clusters —regions which hap-
pen to be undiluted because of statistical fluctua-
tions —which give rise to a "Griffiths phase" below
the T, of the pure system. Consider the probability
distribution of barriers e,„(+) in the ensemble of
9' 's with diameter L. As a result of the compact clus-
ters it has a tail —L exp( —ce,„') extending far
beyond e,„(L). The largest such barrier in a typical
domain of diameter L goes as e ","„d"""d)—C (d)
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x (lnL)"itd '). Thus, at lengths shorter than a cross-
over length L"(d), this tail dominates the barriers due
to hierarchical geometry, and (1) fails.

I now turn to the consequences of (1) for the low-
temperature dynamics. Substituting (1) into (4) gives

(L, T) —(ecL)2ziiT

O
l

O

ORDINARY

so finally

= 2v, Z (J/T)'+ 0 (J/T) +. . . ; (12)

Inr (L, T) = Z [ ——,
'

v '(lnL ) + (2J/T) lnL ]

+ 0 (J/T, lnL ). (13)

The result (13) is contrasted with ordinary dynamic
scaling in Fig. 2. It is valid for L & gT, when L —gr
additional entropy corrections to (13) appear.

These results for r (L, T) can be better understood
by considering the nature of the dynamic renormaliza-
tion group (RG) 23 which would give rise to them.
Assume that we have a one-parameter, discrete static
RG. Rescaling length by the natural rescale factor, b,
we have gT = gT/b, e' =f(e):—6 'e, with f (0) = 0
as the relevant fixed point. The simplest way to ex-
tend this to a dynamic RG has one time parameter v.
To give (9), its rescaling must have the form

r'= Z(e)r.
This is consistent with (12) only if

~(e) —e

(14)

(15)

Thus r(L, T) —L't ), where z(T) diverges as T 0,
in contrast to standard dynamic scaling. 7

Equation (8) is valid only for L « gT. To get
~ (L —gT, T) —r (T), it is necessary to include finite-
temperature corrections, i.e., entropy effects. The
most important of these turns out to be the existence
of many alternative paths with the same, optimal bar-
rier (e.g. , configuration B instead of B in Fig. 1), so
that relaxation is faster than the naive substitution
L $T in (8).

Scaling can give the form of this correction. The
static thermodynamic functions scale with gT and PC's
are self-similar (at L & a), so that

7'(L T) =F(L/(T(T))r(T). (9)

with r (a, T) = ro. Now Eq. (8) can be rewritten with
use of (3):

ln7 (L, T) = Zv~ 'In/TlnL —CZ In/T (10)
for small lnL. (I am now setting ra= a = 1.) This can
be reconciled with the form (9) only if there is an ad-
ditional term of 0 (lnL ) in (10), with

lnF(x) = ——,
'

v~ 'Z(lnx)'+0(lnx)

and

Inr(T) = —,
'

v 'Z(lnPT)'+0(ingr)

log
L

(b) SINGULAR

O

(T)
a

for small 0. Ordinary dynamic scaling is also character-
ized by an RG equation like (14) except that in place
of (15), ordinarily A. (e) b ', a constant, as e 0.
Hence I propose the term "singular dynamical scal-
ing" for the behavior (15). Note that if an approxi-
mate RG is constructed'o which violates (15), it can-
not give the correct behavior in the T 0 limit.

A somewhat different dynamic RG has been con-
structed for the Sierpinski gasket. " This renormaliza-
tion group uses a master-equation approach: The
dynamics is formulated as a random walk (with
weights for each step) in configuration space, a dif-
fusion problem which is equivalent to a resistor net-
work. The network is self-similar and can be solved
exactly, provided that only optimal paths are con-
sidered. This allows exact calculation of some non-
trivial entropy corrections, which are similar in outline
to those found here, but different in detail since the
static RG is singular in this case with e = e+ 0 (e ).

Other random systems with T, = 0 have a dynamics
described by energy-barrier activation (4), but of
course singular dynamic scaling follows only if the bar-
riers scale logarithmically. McMillan's phenomenolog-
ical dynamic RG for an Ising spin-glass at its lower
critical dimension (l.c.d.)24 exhibits singular dynamic
scaling, with a recursion like (15) leading to In/ T—T and lnv —T . On the other hand, in the
random-field Ising model at d = 2, the lower critical

log
L

FIG. 2. Relaxation time as a function of length scale, for
a very low temperature T (solid curve) and a higher tem-
perature T' (dashed curve), for (a) standard dynamic scal-
ing, and (b) singular dynamic scaling. In (b), the first terms
in (13) give parabolas (dotted) which become level at
L —gr, with the corrections (solid, dashed) they level off
only as L ~. If the solid curve is translated so that point
D is moved to the origin, it coincides with the dashed curve;
this is the operation of the dynamic renormalization group.
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dimension, the barriers scale as a power of L, .
What does (12) imply for experiments? One signa-

ture of singular dynamic scaling is upward curvature in
a (ingT, inc) plot. In a small temperature range about
a given T, the data will be consistent with the effective
exponent z =d in'/d lngT —T ', this suggests why
the neutron experiment should find an anomalously
large value for z. Actually the temperature range of
Ref. 6 should be large enough to see curvature, but it
does not. This is easily rationalized since (T was still
only —3a at the lowest T studied.

If simulations, or a repeat of the experiment at
lower T, can reach the scaling regime (gT )L'), the
curvature in (12) should be visible. Also, inelastic
neutron scattering as a function of momentum transfer
q could test (13). The best numerical way to check
Eq. (1) would be exact evaluation of e „for randomly
generated PC's.
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