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We investigate the steady-state scattering function for driven diffusive systems with a single con-
served density. In one dimension, density fluctuations spread as t ', i.e., faster than the diffusive
t'/, for large time t. The corresponding excess noise in the current-current correlation diverges as

for sma11 frequency OJ. Monte Carlo simulation results for a driven hard-core lattice gas con-
firm these results. d =2 is the borderline dimension with marginally nondiffusive behavior; for
d & 2, the spread is diffusive with anisotropic long-time-tail corrections.

PACS numbers: 66.30.Dn, 05.60.+w, 72.70.+m

When trying to understand the phenomena of excess noise in stationary nonequilibrium states we made a
surprising observation: In stationary driven diffusive systems at low dimensionality the spreading of density fluc-
tuations occurs intrinsically faster than would be predicted by an ordinary diffusion law. As a consequence the ex-
cess noise diverges for small frequencies.

Let us consider diffusive systems under a constant uniform driving force and assume that on a coarse time and
length scale their dynamics can be described by the nonlinear Langevin equation

c(r, t)+divj(r, t) =0,

j (r, t) = —D (c (r t) ) grade (r t) +c (r, t)u(c (r t) ) + jL (r, t),

(1a)

(lb)

with c (r, t ) and j (r, t ) the number density and corresponding current density at position r and time t. The second
term on the right-hand side of (1b) represents the action of the driving force: In a system with uniform density c it
sets up a steady particle current cu(c), where u is the average velocity. On the length scales considered the same
is assumed to be valid locally. In addition the current has a Gaussian white-noise contribution jL, which is sup-
posed to summarize globally the effects of the fast microscopic degrees of freedom.

If u=0 (or u=const allowing for a Galilean transformation), (1) is model B of critical dynamics, or the Cahn-
Hilliard theory at high temperatures. Static correlations are short ranged and the frequency spectrum of the total
current J(t) =f ddr j (r, t) is white, i.e. , (J(t)J(s)) —5(t —s). For the driven system, ua0, we assume to have
short-range static correlations as well, an assumption which can be justified for simple model systems. %e want to
know how time correlations are modified, in particular, the truncated current correlation

C(t —s) = V '( [J(t) —(J(t)) —v BN(t) ] [J(s) —(J(s)) —v 5N(s) ]). (2)

Here ( ) refers to the steady-state average with given density c. (J ( t) ) A 0 is the average current,
v= V 'tl(J(t))/Bc, Vis the volume of the system, and 5N(t) =N(t) —(N(t)) with N(t) =f ddr c(r, t). The
subtraction of v BN is important if the particle number in the stationary ensemble is not fixed. Similar subtraction
terms appear in the standard Green-Kubo expression for the bulk viscosity. The excess noise is the power spec-
trum of the current, i.e. , the Fourier transform of (2) with its value for large frequencies subtracted. s 6

In order to investigate (1) for u&0 we split the density as c (r, t ) = c + @(r,t ) and expand cu(c) through qua-
dratic order as

cu(c) = cu(c ) + v@ (r, t ) + w@ '(r, t ) +. . .

with w= —, Bv(c)/Bc. In principle, also D(c) should be expanded, but the nonlinearities resulting from this ex-
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pansion are irrelevant compared to those in cu(c). The linear term is taken care of by the Galilean transformation
$(r, t ) = @(r—vt, t). Then (1) is approximated as

@(r,t ) = —w grad@ (r, t ) + D Ap(r, t ) —divjL (r, t ),

with D =D(c) and jL(r, t) = jL (r —vt, t). physically the nonlinearity —w grad@ expresses the fact that the ve-
locity at which a density fluctuation travels depends on its magnitude.

Let us consider the intermediate scattering function S(k, t) = (@(—k, 0)$(k, t)), where @(k,t) is the spatial
Fourier transform of @(r,t). From it the dispersion of a density fluctation obtains as a function of time propor-
tional to

lim V '(2/k') [S(k, 0) —S (k, t ) ],k~0
and the current-current correlation function as

ti 1 1k. C(t) k= lim — [S(k, 0) —S(k, t) ],
tit2 k- 0 V k2

(4)

with k= k/k.
S(k, t) may be calculated approximately by employing the mode-coupling formalism. In the simplest approxi-

mation this yields the integrodifferential equation

S(k, t) = —Dk2S(k, t) —2(w. k)2[(2vr)"VS(k)] '
JI ds S»S(k, t —s)S(k,s). (5)

Here d is the spatial dimension, the center star denotes convolution in k space, and S(k) = S(k, t = 0). In (5) we
employed the two-mode approximation for the self-energy operator appearing in the mode-coupling propagator, as-
suming this to be dominant for large t and small k. Strictly speaking, this assumption is justified only in dimen-
sions d & 2, but it seems to be a good approximation also in low dimension.

We investigate the solution to (5). For d ) 2 the diffusive term dominates. Following standard procedures9 we
obtain from (5) and (4) a long-time tail in the current-current correlation as

C(t):—2(ww)[S(0)/V] (8mDt)

and the excess noise

Re[i 7r(i cu) ) (d odd)
P( ) =4(ww) [S(0)/V] (8 D) [I (d/2)]

for small frequencies, where I (z) denotes Euler's gamma function. Note that the long-time tail appears only for
the current in the direction of w.

In one dimension the mode-coupling term dominates. To extract its predictions we first rewrite (5) in terms of
the dimensionless variables r = ut, K = pk, and X(~, r) = S(K/p, r/n)/S(0), with n = w S (0)/8D V and
p=4D2V/wzS(0). In addition, we assume S(k) =S(Q) for the range of k values of interest to us. Then, for
d = 1, Eq. (5) takes the form

BX(K, v)
2 K X(K, r) + d(TX» X(K, (T)X(K, r (T)

m
(8)

Next we look for a scale-invariant solution of the form X(K, 'r) = h (K'r ) which should hold in the limit K 0,
~ while Kr2i3 remains constant. Indeed, in this limit the diffusive term ——,

' ~ X vanishes as r ' 3 relative to
the mode-coupling term. As a result the scaling function h satisfies

1

h (x) = — x Jt d ~ ~
- ' 9 ~ h (~x ) i (x (1—~' ') ' '),

dx 4m

where we substituted x = ~r i and A. = (o/r )2i . From-this equation one readily derives

hrn (2/x ) [X(~,0) —X(K, r)] = —h" (0)r
]c 0

implying that a density fluctuation spreads faster than diffusively.

(10)

2027



VOLUME 54, NUMBER 18 PHYSICAL REVIEW LETTERS 6 MAY 1985

10'

C:o
lA

1
CL
l/l

C3

10"-

10

10

10 10 10 "
Time

10 10

FIG. 1. The scaled center-of-mass dispersion as a function of the scaled time ~. Monte Carlo results are shown for
c = 0.503, p = 1 (closed circles); for c = 0.503, p = 0.75 (open circles); and for c = 0.802, p = 0.75 (triangles). Solid line: fit by
the eye with a v

' law of the Monte Carlo results for large 7. . Dashed line: theoretical short-time behavior.

We were not able to solve (9) analytically. Yet a few properties of the scaling function can be deduced: h is
even and, provided it is positive, it is decreasing for x & 0 and bounded from above by exp( —Cx3t2). Also
h" (0) = ( —9 /2')h (0)h ' h (0). So for small x, h has to be Gaussian. If one makes the Ansatz h (x)
= exp( —

7 x2), which cannot be correct for large x, and determines y from the above expression for h" (0), then
—h '(0) = (9/24m)2t3. Transforming back to the original variables we predict that the excess noise diverges for
small co as

P (co) = (2/9m) 't %31 ( —,
' ) [S (0)/ V]'t'w4t'o)

where the ——, power is exact and the coefficient is approximate.
The borderline dimension is two. Here the mode-coupling term still dominates for long times, but the enhance-

ment of the diffusion in the field direction is only logarithmic. Assuming

S (k, t ) = S (0) exp [ —Dk2t —5 (k w) 2t (Int ) ~]

for t large and k 0 and solving for 5 and ( by identifying both sides of (5) for k 0, one obtains (= —, and
5= [3S(0)/87r Vw]2 3D ' 3, yielding for the current correlation

C(t) = ww[S (0)/V]D ' [S(0)/2 J6vr w V] 3/t (lnt ) ' (12)

The crossover in the dispersion from linear to t (lnt ) t behavior occurs for times of the order
(Dc) 'exp[St VD /3w S (0) cos 4&], where 4 is the angle between k and u.

We checked our predictions for one-dimensional systems by Monte Carlo simulations on a hard-core lattice gas:
particles hop on a one-dimensional lattice with jump rate pI [(1—p)I'] for hops to unoccupied neighboring sites
on the right (left). Double occupancy of sites is forbidden. In the steady state particles are distributed at random
with density c, 0 ~ c ~ 1. Then, choosing the lattice spacing as the unit of length, one has
u(c) = (1 —2c) (2p —1)I, w = —(2p —1)I, and S (0) = c (1 —c) V, with V the number of sites in the system.
Hence the scaling parameters n and P follow. On a lattice of 20000 sites we simulated systems with the following
combinations of values for c and p: c = 0.503, p = 0.75; c = 0.503, p = 1; c = 0.802, p = 0.75. We recorded the first
and second moment of the center-of-mass position X (t), which yields directly the dispersion
Iim„o V '(2/k2) [S(k, 0) —S(k, t)]. The results are shown in Fig. 1, where we have plotted the scaled center-
of-mass dispersion,

( Vc) ( {X(t)—X(0) —(X(t) —X(0)){ )/p S(0),
as a function of cxt = r on a doubly logarithmic scale (note that oN = 0 in our simulations). The solid line shows a
C~4 3 law; hence our theoretical prediction for the long-time behavior appears to be well confirmed. The coeffi-
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cient is found as CMcs= 2.1 from the simulations,
which is to be compared to our approximate prediction
C,„=(9/2J ) i =1.86.

Some comments are in order:
(i) Equation (3) in one dimension without fluctuat-

ing current is known as the Burgers equation and used
as a simple model for one-dimensional gas flow. It can
be solved exactly. An initial disturbance spreads dif-
fusively. The (deterministic) Burgers equation with
random initial data has been studied extensively. '

(ii) As we remarked already, in one dimension the
mode-coupling equation (8) does not suffice to deter-
mine the scaling function completely. Instead the full
self-energy operator of the mode-coupling propagator
should be used in this equation. The scaling behavior
X (K, '7 ) = h ( K'i ) would not be affected, but the ex-
plicit form of the scaling function h would be altered as
well as the coefficient of the 74/3 dispersion.

(iii) The t i decay of current correlation functions
will also be found in equilibrium fluids in one-
dimensional geometry (e.g. , in a narrow tube), provid-
ed that momentum cannot dissipate away through the
walls. Notice, however, that real one-dimensional sys-
tems fall outside this class, as they do not satisfy the
ordinary hydrodynamic equations.

(iv) In Eq. (8) the diffusive term ——,
'

t~ X dominates
the mode-coupling term for small 7. . As a result the
mean square displacement of the center of mass rela-
tive to the average drift is linearly proportional to ~ in
this time regime. In Fig. 1 the theoretical prediction
of scaled dispersion equal to v is shown by the dashed
line. The crossover from this initial behavior to the
asymptotic v. behavior appears to occur rather sharp-
ly around v = 0.1, but a better resolution of the Monte
Carlo data in this region would be needed.

(v) The anomalous diffusive behavior found for
fluctuations of the bulk density does not occur for
tracer density fluctuations. ' ' The reason is that
tracer currents couple only to products of a tracer and
a bulk density mode. The drift velocities of these
modes in general differ from each other and therefore
correlations between them decay exponentially. For
certain specific choices of parameters in a given system
one may be able to find equal drift velocities for bulk
and tracer fluctuations. In that case the truncated
velocity autocorrelation function of a tracer particle
will exhibit the same type of long-time behavior as the
collective current correlation function discussed here.

(vi) It would be of great interest to find experimen-
tal confirmation of the phenomena described here,
especially in the one-dimensional case. The main

problem seems to be realizing conditions under which
the crossover frequency = 10ct, cf. above Eq. (8), lies
within the accessible range. To our guess the most
promising systems for showing co

' behavior in elec-
trical current noise v ould be hydrogen in metals near a
critical point (so the sample diameter can be made
comparable to the correlation length) and quasi-one-
dimensional systems, such as TCNQ salts. For the
type of experiment as discussed, for instance, by Sco-
field and Webb'" our theory predicts a constant noise
below a corner frequency too —ott/4(27rzD/L ) i, and
a noise spectrum proportional to co for cop(0)( co~=100. and to co for ~ ) co~. One could also
search for the effect in semimacroscopic systems, e.g. ,
polystyrene suspensions flowing through capillary
tubes, or in real macroscopic systems, such as pellets
dropping through tubes or traffic flows on highways.
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