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Hierarchal Mass Scales in Lattice Gauge Theories with Dynamical, Light Fermions
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SU(2) lattice gauge theory with two Dirac species of light, adjoint fermions included in the
dynamics is simulated at finite temperatures by use of the microcanonical algorithm. The theory
contains two natural mass scales, the string tension for heavy, fundamental quarks and the chiral-
symmetry—breaking scale of light, adjoint quarks. The two scales are found to be distinct. This
result generalizes earlier results obtained in the quenched approximation and should encourage

builders of hierarchal models.
PACS numbers: 11.15.Ma, 11.30.Jw

An important and challenging problem in high-
energy theoretical physics is the nature of chiral-
symmetry breaking. In quantum chromodynamics it
plays a decisive role in the spectroscopy of mesons and
baryons and in low-energy scattering processes involv-
ing pions. In theories of the weak interactions it is be-
lieved to be essential to the fermion mass problem,
dynamical Higgs mechanisms, and hierarchal mass
spectra in general. Since these are nonperturbative
phenomena, they have eluded detailed predictions for
some time. However, with the emergence of lattice
gauge theory and computer simulation methods, some
of the simpler questions in the field can be attacked
numerically. For example, in an earlier work Kogut
et al.! considered chiral-symmetry breaking in pure
SU(2) gauge theory in the quenched approximation
and found evidence for the Casimir scaling hypothesis?2
which plays a central role in hypercolor models of the
weak interactions.? In particular, we measured the
critical effective couplings necessary to trigger chiral-
symmetry breaking for fermions in the /=%, 1, 3 and
2 color representations of SU(2) and found evidence
for Casimir scaling,?

Cy(Dglom =4.0, 1)

where C,()) is the quadratic Casimir constant for the
fermion and g2, is the critical effective coupling in
the momentum-space subtraction scheme. The in-
teresting points about Eq. (1) are that it implies (1) a
hierarchal sequence of characteristic mass scales for
the condensates of the fermions in different color
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representation, through asymptotic freedom of the
running coupling constant,? and (2) a rather small crit-
ical coupling necessary to drive chiral-symmetry break-
ing. In particular, it shows that for fermions in high
representations of the color group, short-distance
forces alone are adequate to drive chiral-symmetry
breaking. Apparently nonperturbative dynamics such
as confinement, string formation, and instanton
and/or vortex dynamics are not always needed for
dynamical mass generation.

Of course Eq. (1) was obtained in the quenched ap-
proximation which ignores the impact of the condens-
ing light fermions themselves on the gauge field
dynamics.* Since the primary influence of light fer-
mions is expected to be screening of strong gauge
forces, their inclusion into the dynamics is expected to
inhibit the formation of a condensate. It is then natur-
al to ask whether the evidence for chiral-symmetry
breaking found in Ref. 1 is limited to the quenched ap-
proximation or if it is a feature of the untruncated
theory. In this Letter, we shall present some evidence
that the phenomenon survives the inclusion of fer-
mions into the dynamics.

Using the microcanonical simulation methods® we
studied SU(2) lattice gauge theory with two Dirac
species of adjoint quarks. The microcanonical algo-
rithm has been discussed elsewhere’® and the only new
feature employed here is the inclusion of /=1 light
fermions. This leads us to replace the usual fermion
contribution to the lattice action of fundamental stag-
gered fermions® with the expression

)]

where ¢,(n), i=1, 2, or 3, is a three-component Grassmann field defined on the lattice sites n = (no,n), D,(n) is
the /=1 representation matrix of the gauge field U,(n) on the link connecting the nearest-neighbor sites » and
n+pw, n“(n) are the phases of staggered fermions, and m is the bare fermion mass in lattice units. With the hop-
ping matrix of Eq. (2) the microcanonical Lagrangian is written down and the equations of motion used in the
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FIG. 1. Raw data for ($y) at m=0.10 (circles) and 0.075

(squares) vs B=4/g% Typical statistical uncertainties are
shown.

computer simulation follow. The second-order for-
malism for the fermion hopping matrix Eq. (2) is
used, and following the notation of the third entry to
Ref. 5 the real pseudofermion field P(n) is set equal
to zero on every other lattice site to reduce the
number of fermions characterizing the continuum lim-
it of the theory to two Dirac species.

To probe the theory for multiple mass scales we
simulated it at finite temperature.! A lattice 4x 83
(N,=4, N=8) was chosen so that the physical tem-
perature T was aT =+, where a is the lattice spacing.
There are two mass scales of interest: the temperature
Tp at which the string tension for heavy fundamental
quarks vanishes and the temperature T, at which chiral
symmetry is restored for the adjoint quarks. The first
temperature can be measured from the Wilson line

N,—1
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which is the exponential of minus the free energy of a
static fundamental quark in units of the physical tem-
perature’ or the gluonic contribution €/ 7% to the
theory’s internal energy.® At the temperature where
the gluons form a plasma, W and e/T? should rise
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FIG. 2. () after the m — O extrapolation (circles) and

Wat m =0.075 (squares) vs 8.

from zero. The second temperature is that where
(Y) vanishes for / =1 massless quarks.

In Figs. 1-3 we show the results of the computer
simulations. At each 8 2000-4000 time steps of the
microcanonical equations were made and the observ-
ables were measured every 25 steps. Statistical errors
of less than 3% resulted from (yy) and W while €/ T*
had greater uncertainty. Typical error bars are shown
in the figures. Figure 1 shows the raw (yny) data. At
each B value (y) was measured at the masses 0.10
and 0.075 and the results were extrapolated to zero
mass. The result of that extrapolation and W for
m=0.075 are shown in Fig. 2. W vanishes at
B=2.10 £0.05 and (yys) vanishes at 8=2.60. Since
larger B corresponds to larger physical temperature,
the two temperatures Tp and 7, are clearly distinct. In
fact, it was found that W for m =0.075 was slightly
larger than W for m =0.10 at a given 8. This result is
sensible since decreasing m should increase the effects
of fermion screening. So in the zero-mass limit T} is
presumably even smaller than that predicted by Fig. 2.
The ‘tail” in the plot of (Y¥) vs B in Fig. 2 is
presumably due to the crudeness of the zero-mass
extrapolation—smaller m values are probably neces-
sary to measure () well when it is numerically
small—and the solid curve is simply meant to ‘‘guide
the eye.”” In past studies’ better data at smaller m
values have served to remove the ‘tails’’ in such
curves and thus to leave critical curves as shown in the
figure. Even with these relatively crude data, howev-
er, the difference in the two temperatures is quite
firm. Finally, in Fig. 3 we show the gluonic internal
energy €/ T*. It jumps from zero at 8=2.10 +0.05, in
agreement with the Wilson-line data, and approaches
the Stefan-Boltzmann limit for free gluons on a 4x 83
lattice at large temperatures.

The difference between the critical 8 values in Fig. 2
is AB=0.50-0.55. With asymptotic freedom this
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FIG. 3. Gluon internal energy in units of the physical
temperature vs 8. Typical statistical errors are shown and
the dashed line is the Stefan-Boltzmann value for free
gluons on a 4 x 83 lattice.
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change in coupling can be translated into a ratio of crit-
ical temperatures. For two massless Dirac adjoint fer-
mions, the ratio of the temperature to one-loop order
is

T./ Tp=exp(—m2Ag) =175 £50, @3)

a very large number indeed! This rough estimate is
much larger than that found in the quenched approxi-
mation (7T,/Tp=8.6 +4.5, quenched) and should not
be treated as quantitative until larger lattices are simu-
lated and asymptotic freedom with fermion feedback is
verified. However, the result is certainly encouraging
motivation for more ambitious calculations.

In summary, the disparity in mass scales observed in
simulations of the quenched approximation to lattice
gauge theory appears to survive the inclusion of fer-
mion loops. However, quantitative and reliable nu-
merical results on this difficult problem must await
larger-scale simulations or more sophisticated theoreti-
cal techniques. Simulations on larger lattices, 6x 123,
are planned, and pseudofermion simulations in which
the number of /=1 fermion species can be better con-
trolled are also underway.!® It would also be fascinat-
ing to simulate larger gauge groups which are relevant
to unified gauge theories. The possibility of first-order
transitions and their impact on the two scales would be
interesting to understand and might have cosmological
implications.
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