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A simple method is used to calculate the currents induced by static uniform electromagnetic
fields in the ground state of a two-dimensional electron gas. This is done for both the relativistic
and the nonrelativistic cases. This analysis is used to explain the apparent similarity between the
anomalous vacuum current in three-dimensional quantum electrodynamics and the quantized Hall
current. The different natures of the two currents are demonstrated, and it is shown that the effec-
tive action for the gauge field in the nonrelativistic case does not contain a genuine Chern-Simons
term. This precludes any attempt to use the chiral anomaly to explain the quantized Hall effect.
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The experimental discovery that the Hall conductivi-
ty of a two-dimensional system is quantized in units of
e?/2nk ! has led to extensive theoretical investiga-
tions.? One of the interesting ideas suggested® is the
possible relation between the quantized Hall effect and
the recently discovered chiral anomaly in (2+1)-
dimensional gauge theories.* In 2+1 dimensions, a
parity transformation corresponds to changing the sign
of one of the two spatial coordinates, and, thus de-
fined, parity is a symmetry of the classical action only
if the fermions are massless. In the quantum theory,
however, this symmetry is anomalous as one can see
by examining the effective gauge-field action after do-
ing the functional integration over the fermionic
fields. This corresponds to the fact that external gauge
fields drive currents of abnormal parity in the fermion-
ic ground state. For quantum electrodynamics in 2+ 1
dimensions, the relation between the current and the
external field appears to be similar to that found in the
quantized Hall system, and corresponds to a Hall con-
ductivity equal to e?/2a#% when the fact that the spin of
the electron can take one of two values is taken into
account. This analogy has been further extended’ to
explain the fractionally quantized Hall effect
discovered later.® The motivation for these ideas is
the hope that there may be an approximation in which
the states near the Fermi surface can be described by a

2+ 1 massless Dirac theory in the same way this is pos-
sible, say, for some linear polymer systems.’

It is the purpose of this paper to settle this question.
It will be shown that the two effects are of quite dif-
ferent natures, and that this is related to the physical
definition of the current in each case, and not to the
particular wave equation satisfied by the corresponding
fields. The method I shall use will be to describe the
two effects in the same simple language that makes
clear the reason for their apparent similarity and less
apparent differences.

I shall consider the motion of a noninteracting elec-
tron gas in the x-y plane under the effect of a uniform
static magnetic field in the z direction, and a uniform
static electric field in the plane of motion. The electric
field can be chosen in the x direction without loss of
generality. The gauge can be chosen such that

Ag=—Ex, A,=0, A,=Bx. (6]

For simplicity, I shall use the natural units (A=c =1).
Let us consider the relativistic system. The Dirac
matrices will be chosen to be

vi=ioy v2=—ioy, yo=o0;.

It is convenient to distinguish between the two cases
eB > 0 and eB < 0. In the first case, the normalized
positive- and negative-energy wave functions for a par-
ticle of charge e and mass m are

U n (X330 = (dma,) = 2e™((a, +m) 2y, [x — x5 (k)1S,

+ (ay—m)V2y,_1[x—x5" (k)1S)exp(— iwght),

(2a)

vien (6y30) = (Bma,) ~ 2™ {(a, — m) 2y, [x — x5 (K)1S;

— (an +m )‘/zn[;,,_l[x — X0 (k)]Sz}eXp(—iWk;,t)-

(2b)

¥, (x) is the nth normalized wave function of a harmonic oscillator of frequency Q given by

Q =2e(B?—EY)?,

while k is a real number. S, and S, are two-component spinors given by

S = [i cosf/2

_ [i sin6/2
sing/2 ) SZ_[

cos8/2 )

(2c)
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where sing = E/B. (a) \w (®) w
— [ 2 1/2 |

a, = [m?*+2eBn cosf]'?, 2d) s\"g s\ w3

xg* (k) = (eB) ~'(k + a,/cosb), (2e) T s

Wt = — k sind + a, cose. (2f) 0 T— T

k,n n k el %\ :=l
For eB < 0, we can use the charge-conjugate wave \n=2 sz
n=3 n=3

functions

’ * r_ *
Ukn =01V —fps Vgn = 01U _fp 3)

with sin® replaced by (—sin6). It should be noted
that vy ¢ and u; ¢ vanish for m > 0 and m < 0, respec-
tively. (See Fig. 1.)

The field operator can be written as

FIG. 1. The spectrum of a two-dimensional relativistic
electron in a uniform static electric field in the plane of
motion and a uniform static magnetic field perpendicular to
it for eB > 0 [Eq. (2)] when (a) m > 0, (b) m < 0.

Plxy;t) = i f:o di [ty (6,930 @y + v (30 b, 1. 4

n=0

The vacuum state [0) is defined by a;,|0) =0,
bi.,10) =0 for all n.
The current J* is defined to be odd under the
charge-conjugation symmetry
Y(xyst) = o (p;e).
We can easily check that this is true for

Ju oy =—7ely)galha(xy;0), yglxy;t)). (5
The vacuum current is given by
(017,10) =%e [ dk Grny,vion = By uicn)- (6)

Using the set of equations (6) for the eigenfunctions,
one can evaluate the contribution to the current from
one Landau level,

oo

jy, = f_w dk ﬁk,n'yuuk,n = f_w Ve,nY uVi,n»
which gives
e’E eB

. eleB| . .
L = _eL ) 7
P R Al vy Py ™
The vacuum current then reduces to
017,10y =3/, (N_—N,), (8)

where N, and N_ are the numbers of positive- and
negative-energy Landau levels, respectively. Note that
this expression is not well defined for massless fer-
mions because there is a zero-energy Landau level in
this case. For m #0, one can easily see that

m eB
N,—N_=—F——+. )
* Im| leB|
Equations (7)-(9) can be combined to give
m e’B
—__m es J =
(01J,/0) ] am (0l/;10) =0,
, (10a)
m e‘F
(01,0 = im| 4=’
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which can be written in the covariant form

e _m
87 |m|

Equation (10) clearly violates parity conservation since
it tells us that the parity-even current components J,
and J,, are proportional to the parity-odd external fields
Band E,.

Consider next the case of the quantized Hall effect
in a nonrelativistic two-dimensional electron gas. The
field in this case satisfies the Schrodinger equation.
The solutions of the time-independent Schrodinger
equation are

(0]J*]0) = — eWeF, . (10b)

Yin o= 27) "2y, (x)S (o) (11a)
corresponding to the energies (for eB > 0)
w(k,n, o)
=(n+5-— o-)e—’f —k sinf — % sin9, (11b)

where ¢, (x) is the normalized nth wave function of a
harmonic oscillator of frequency em /B, while o= + %
is the z component of the spin of the electron, and
s (o) is the spin wave function. (See Fig. 2.)

The current carried by one Landau level is given by

j0=ef_wdxllp,,,k",|2=eIeBl/27-r, (12a)
jx=ef_°°d‘:,k,a[—a—”;‘gx]d’k,n,o:o’ (12b)
, o 1 < e
b= ef_w‘l’n,k,o-[_ ﬁay_ "r;Ay Yino
_€e’E_eB (120)
27 |eB|’ ¢
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FIG. 2. The spectrum of a two-dimensional electron mov-
ing under the action of the same fields of Fig. 1 [Eq. (11b)].

exactly as in the relativistic case. But, unlike the rela-
tivistic case, the current is defined here to be the
current carried by all the Landau levels below the Fer-
mi energy. Let there be n such levels. Then we have

p=Jo=n(e*B/2mw)sgn(eB), (13a)
J,=n(e’E/2m)sgn(eB). (13b)

The above relations differ in two ways from those in
the relativistic case: There is an extra factor 2n, and
more importantly, there is no violation of parity con-
servation since both sides of both equations are parity
even. The effective Lagrangian of the gauge field does
not contain a genuine Chern-Simons term, but some-
thing similar that contains the extra factor sgn(eB), at
least for uniform static fields, and a generalization
thereof for arbitrarily varying fields. The matters are
further complicated by the fact that, when B vanishes,
the above-described picture of the Landau levels is no
longer valid, and the dissipative effects become cru-
cial.

At the risk of repeating myself, I shall state that this
difference is a consequence of the definition of the
currents in the two cases, and not the type of wave
equation satisfied by the quantum field. It is probably
not very useful for the understanding of the quantized
Hall effect to make use of the Dirac theory.

The following final remarks may be in order. If we
consider a (2+1)-dimensional relativistic system of
finite electron density, the ground-state current will be
the sum of the parity-nonconserving current given by
Eq. (10), and a parity-conserving piece given by Eq.
(13). The effective gauge-field Lagrangian will have a
genuine Chern-Simons piece,? and a ‘‘pseudo-Chern-
Simons’’ term having a factor of sgn(eB), or its gen-
eralization for arbitrarily varying fields. The
pseudo-Chern-Simons term breaks charge-conjugation
symmetry. This is understandable since there is no
such symmetry to begin with in the Schrodinger
theory, while the finite-density state in the Dirac
theory is not the vacuum state, and not an eigenstate
of the charge-conjugation operator.

It is important to remember that the problem of the
quantized Hall effect is not to calculate the current in
the free-electron approximation, but to explain why

this current survives the interactions of the electrons
with the imperfect lattice and with each other. An
anomalous current would not be affected by such con-
siderations, and this is why relating the quantized Hall
effect to the anomaly had seemed at first to be such an
attractive idea. Since, as I have shown, there is no ac-
tual anomaly in the system, it is probably quite useless
to pursue this idea any further.

It has been recently suggested® that the vacuum
state of three-dimensional QED should be treated as a
collective state similar to the ground state of
Laughlin’s theory of the fractional Hall effect® in
which the Coulomb interactions between the electrons
in the same Landau level are taken into account. I do
not think that this is true because the effect of the
Coulomb interaction is quite different in the two cases,
not because the Coulomb potential is logarithmic in
three-dimensional QED and inversely proportional to
the distance in the case of the Hall effect, a fact that
Laughlin has pointed out to be of secondary impor-
tance, but because definition of the charge density in
QED to be odd under charge conjugation leads to a
Coulomb interaction that couples both filled and emp-
ty states. Then the electrons in the zero-energy Lan-
dau level see a positive background of charge density
equal to that carried by one half-filled Landau level.
This is quite different from the neutralizing back-
ground in the Hall system. The problem in the latter
system is not to find the filling factor of the Landau
level that minimizes the energy, but to find the values
of the filling factor for which there are collective
Laughlin states.
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G. Baskaran, J. Distler, and R. Wijewarhana, to whom
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ported in part by the National Science Foundation
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