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Beyond the Rigid-Ion Approximation with Spherically Symmetric Ions
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Ab initio calculations show that a spherically symmetric charge relaxation of ions in a crystal, in
response to the long-range electrostatic potential, is important for understanding the splitting
between longitudinal- and transverse-optic-mode frequencies, and the violation of the Cauchy rela-
tions among elastic constants.
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There are two major deficiencies of the lattice
dynamics of ionic solids based on the rigid-ion approx-
imation: (I) The splitting between the longitudinal
optic (LO) and transverse optic (TO) mode frequen-
cies is too large; and (2) the Cauchy relations between
elastic constants, which follow from the rigid-ion ap-
proximation, are usually not satisfied experimentally.
While lattice-dynamical models involving dipolar (or
higher-order) charge relaxation are capable of remov-
ing these deficiencies, we point out in this Letter
another form of charge relaxation which is also impor-
tant in this regard. What previous models of lattice
dynamics have not taken into account is the fact that
the ions are free to change their radial charge distribu-
tion, i.e., undergo a spherically symmetric breathing
motion, in response to changes in the long-range elec-
trostatic potential. We refer to this as a potential-
induced breathing (PIB) . Variations of the shell
model which incorporate breathing'2 are basically dif-
ferent from PIB in that their breathing motions are not
directly coupled to the Madelung potential. As such,
they have no direct effect on the splitting of the LO-
and TO-mode frequencies.

The charge density of an anion in a crystal is more
localized about the nucleus than it is in vacuum. This
is because the electrostatic potential in the region of an
anion site lowers the potential energy of the electrons
in this region, which draws them closer to the nucleus.
This effect can be approximated in an atomic calcula-

tion by imposing an external potential3

V„(r) ='
—eVi, for r ( zi,/( —evk),
ezklr for r & zkl( —eVk),

where e is the electronic charge, Vk is the electrostatic
potential at the site of the kth ion due to the rest of the
ions in the crystal, and z„ is the charge of the kth ion.
A value for Vk is readily obtained by application of the
Ewald method with the assumption that the rest of the
ions are point charges. For the rock-salt structure

Vk = —3.495 129zk/a (2)

in atomic units with energy in hartrees, where a is the
lattice constant.

Once realistic charge densities have been deter-
mined by this or some other method, reasonably good
predictions for phonon frequencies are obtained from
pair potentials derived by the assumptions that (a) the
charge densities of the ions do not change as the ions
move (rigid-ion approximation) and (b) the electronic
energy is related to density as though it were locally a
free electron gas. 4 6 In such a calculation, however,
one finds that the frequencies of the LO modes are
predicted to be significantly larger [26% for NaCl (Ref.
5) and —51% for MgO (Ref. 6)] than the correspond-
ing experimental values.

If we go beyond the rigid-ion approximation, but
still require the ions to be spherically symmetric, the
total energy of the crystal takes the form
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the first term is the long-range Coulomb interaction expressed in terms of the ionic charges and the positions o
the ions [r(k) is the position of the kth ion in the lth unit cell]; the second term is the contribution from the self-
energies Sk of the ions, which are functions of the potential

P(k) = X'z„./lr(k) —r(,'.) I,
I k

(4)

at the (k) site; and the third term represents the rest of the energy, expressed as a sum over pairwise contribu-
tions. The self-energy of an ion is its total energy, which we calculate from its charge density as described below.
The prime on the summation signs indicate that the (I'k') = (ik) terms are omitted. The pairwise interactions
now depend upon the electrostatic potential at the sites of the ions as well as their separations. In spite of their
dependence on electrostatic potential the contribution of these pair interactions to the dynamical matrix is short
range in nature (i.e., does not contribute to the LO-TO splitting) because it originates from the overlap of charge
densities which fall off exponentially with large distance from the nucleus.

Differentiating the second term with respect to Cartesian components of the position vectors r(k), we have

2

XS„(P(„')) = X, S„'(P( ') ) " + S„"(P(') ) (5)
Q» ( )Q»p( ) lk Ik Q» (m)Q»p(m ) B»~(g ) Q» (m )J J

The last term does not contribute to the LO-TO splitting (see Appendix) and so we give it no further consideration
here. W'riting S„,or one of its derivatives, with the argument omitted indicates that it is evaluated at the potential
at the kth site of the undistorted crystal. Substituting P(k) from Eq. (4) we have
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where

~i+' k k'+ (7)

Y = z —ztS2 —z2Sj (9)

where the subscripts 1 and 2 refer to positive and neg-
ative ions, respectively.

Charge densities for the ions under consideration
were calculated as a function of Vk [Eq. (1)] with use
of a suitably modified version of the program of Liber-
man, Cromer, and Waber. These calculations were
carried out with use of the local-density exchange-
correlation functional of Hedin and Lundqvist with
self-interaction corrections included explicitly. Next,
the self-energies Sk were determined by integration of

Thus, that portion of the dynamical matrix which
comes from the first and second terms of Eq. (3) is
the same as that from the first term alone, but with
zkz„, replaced by zkz„, + f„'„,.

For compounds with the rock-salt structure the LO-
TO splitting is given by

o)L2o —coT2o = 4n e Y2/p, u,

where p, is the reduced mass, u is the volume per unit
cell, and Y2 is an effective charge factor. In the rigid-
ion approximation Y2= z = 1 (4) for alkali halides
(alkaline-earth oxides). When the self-energy term is
included Y2 becomes

l

the same expressions for exchange and correlation en-
ergy density, while the Thomas-Fermi form was used
for the kinetic-energy contribution. We use the
Thomas-Fermi form for kinetic energy to be con-
sistent with the calculation of the short-range pairwise
energies [third term of Eq. (3)]. (The pairwise ener-
gies are derived following the work of Gordon and
Kim4 which uses the Thomas-Fermi form. ) The
derivatives of the self-energies, Sk=dSk/dV„, were
then evaluated numerically at values of Vk correspond-
ing to the lattice constants of the various ionic com-
pounds under consideration [Eq. (2)]. The values for
Sk for the positive ions (k=1) are relatively small
compared to those for the negative ions. The values
obtained for S2 are listed in Table I along with the cor-
responding effective charge factors calculated from Eq.
(9) with S~' = 0. For comparison, empirical values for
Y obtained from experimental values' for coLo and

cuTo using Eq. (8) are also listed in Table I.
From the results in Table I we see that much of the

reduction in LO-TO splitting from the rigid-ion value
can be accounted for by a spherically symmetric
breathing of the ions in response to changes in the
electrostatic potential at their sites. Previous lattice-
dynamical models attribute the entire reduction in
LO-TO splitting to dipolar effects.

We have calculated the elastic constants of MgO"
by evaluating the total energy [from Eq. (3)] as a func-

1941



VOLUME 54, NUMBER 17 PHYSICAL REVIEW LETTERS 29 APRIL 1985

TABLE I. Self-energy derivatives Sk= dSk/dVk for the
negative ions (k = 2) of the alkali halides and alkaline-earth
oxides along with calculated [Eq. (9)] and empirical [Eq. (8)
with experimental frequencies taken from Ref. 10] effective
charge factors Y.

TABLE II. Comparison of calculated results for the elas-
tic constants of MgO in the rigid-ion and breathing-ion ap-
proximations with the corresponding experimental values.

a (A) C~~ (Mbar) C~2 (Mbar) C44 (Mbar)

Compound

Lattice
constant

(A) Yea[a Yemp

Rigid ion 4.23
Breathing ion 4.30
Expt. 4.21

4.28
2.67
2.88

1.87
0.70
0.88

1.87
1.36
1.55

NaF
NaC1
NaBr
NaI
KF
KC1
KBr
KI
RbF
RbC1
RbBr
RbI
MgO
Cao
SrO
BaO

4.63
5.64
5.98
6.47
5.35
6.29
6.60
7.07
5.63
6.58
6.89
7.34
4.21
4.81
5.16
5.52

0.51
0.20
0.32
0.20
0.34
0.20
0.26
0.18
0.29
0.19
0.24
0.17
0.94
0.88
0.72
0.68

0.70
0.89
0.82
0.89
0.81
0.89
0.84
0.91
0.84
0.90
0.87
0.91
1.46
1.50
1.60
1.62

0.80
0.70
0.70
0.63
0.87
0.74
0.73
0.71
0.85
0.72
0.73
0.62
1.15
1.26
1.40
1.43

tion of lattice strains, with the long-range Coulomb in-
teractions and the potential at the ion sites computed
by the Ewald method. The results are shown in Table
II along with corresponding results in the rigid-ion ap-
proximation and experimental values. The better
agreement obtained for the lattice constant of MgO in
the rigid-ion approximation is fortuitous. Typically
one finds discrepancies of a few percent in the lattice
constant using either rigid ions or PIB ions, with no
clear trend in the discrepancies. In the rigid-ion ap-
proximation the lattice constant is determined by a bal-
ance between the positive pressure due to the
Madelung energy and the negative pressure due to the
overlap of the ions. With PIB included the anions in-
hale as the lattice contracts, which reduces the overlap
forces as it increases the self-energy of the anions,
thus transferring some of the negative overlap pres-
sure to that arising from the anion self-energy. When
the ions are allowed to breathe and the lattice allowed
to relax to a new energy minimum the energy of the
crystal is obviously lowered, but the new lattice con-
stant can be either larger or smaller than the rigid-ion
value. On the other hand, a clear improvement is seen
in the calculated elastic constants when PIB is intro-
duced. We see that the rigid-ion elastic constants are
much too large and of course the Cauchy relation,
Ct2= C4q, is contrary to experiment. If the ions are al-
lowed to breathe in response to the electrostatic poten-
tial we obtain much better agreement with experiment.

We have also begun to calculate transition pressures

for the rock salt to CsC1 structure with PIB ions. Here
we find modest improvement, but still substantial
discrepancies exist. For example, for NaC1 PIB raises
the transition pressure from its rigid-ion value of —50
to —150 kbar, but still much short of the —300 kbar
experimental value. Recently Hemley and Gordon'2
have included PIB in the calculation of transition pres-
sures for alkali halides and find a value of 191 kbar for
NaC1. In their calculation the charge densities were
derived by the Hartree-Fock method.

We have shown that a potential-induced breathing
of ions, which has not been previously considered in
model calculations, plays a major role in the lattice
dynamics of ionic solids. However, as can be seen by
the results in Table I, substantial discrepancies still ex-
ist within the spherical-ion approximation. Notice that
the discrepancies between Y„~, and Y, „ increase as
one goes to the heavier halide systems, which is con-
sistent with the notion that the heavier halides are
more polarizable.

!n conclusion, we stress that our results imply that
PIB is not a minor, subtle effect compared to charge-
relaxation effects treated by earlier lattice-dynamical
models. '3 The strategy employed in the development
of these earlier models was (a) to formally express
changes in energy as perturbations (or variations)
from an assumed ground state and (b) to test various
parametrized models of these expressions for accuracy
in reproducing measured phonon dispersion curves.
While the models which evolved are capable of accu-
rately fitting phonon-dispersion curves, they require
typically a half-dozen or more parameters, and as such,
their success in this arena does not prove their physical
validity. On the other hand, our results came from an
effort to derive the ground state of the system from
first principles. While our approach is relatively sim-
ple, we believe that it is reasonably accurate at this
zero-order level.

We emphasize that PIB is a zero-order effect coming
as it does from the response of the negative ions to the
Madelung potential. Other charge-relaxation effects
arising from overlap, or electric field, which are treat-
ed in various ways by earlier models, can be included
as perturbations on this new ground state of the sys-
tem. It is important that one start with a proper zero-
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order description of the system because perturbation
theory can only be applied to a reasonably accurate
ground state. Obviously this is essential for oxides be-
cause it is this zero-order effect which stabilizes the
02 ion. In view of this it should not be too surpris-
ing that PIB would play a major role in the statics and
dynamics of ionic systems.

This work was partially supported by the Office of
Naval Research under Contract No. N00014-80-C-
0518.

Appendix A.—s long as either (,~) or ( ~ ) is equal to

(k) the term involving Sk' in Eq. (5) is zero for the
rock-salt structure because r)P(k)/r)r (k) is the nth
component of the electric field at the (k) site, which is
zero for crystals with ions at sites of inversion sym-
metry. Thus,

„r)&(k) r)&(k)

Ik fa J I m
P J'

This term converges absolutely, since it goes as 1/r4,

and therefore does not contribute to the LO-TO split-
ting.
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