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Theoretical Proof That Most Nuclei Must Have Positive Electric Quadrupole Moments
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Within a theory which unifies the nuclear collective and single-particle models and which is valid
for arbitrary vibrational amplitudes, the average positiveness of the electric quadrupole moments
follows from two requirements: (1) The nucleons have to stay within the range of nuclear forces
for a strongly deformed nucleus; (2) the wave functions on the average do nor show any preference
for prolate or oblate shape.

PACS numbers: 21.10.Ky, 21.60.Ev

To the author's knowledge there is no simple
theoretical explanation for the experimental fact that
most nuclei have positive electric quadrupole mo-
ments. The shell-model values for these moments are
by far too small and do not show a preference for posi-
tive values. The collective and the unified models do
not offer a simple explanation either. All this is stand-
ard knowledge of theoretical nuclear physics and can
be found in almost any book on this subject (see, e.g. ,
Eisenberg and Greinert and Hornyak2).

The reason for the failure of the collective model
comes from its restriction to small nuclear deforma-
tions. The author has proposed a theory which is valid
for arbitrary deformations. It starts from a transforma-
tion3 which defines collective and new single-particle
variables, and is brought into full agreement with the
conventional unified model after the introduction of
spin-orbit coupling and the restriction to small defor-
mations. 4 5

The latter restriction will not be used in this paper.
It will be seen that deviations from the conventional
unified theory (which is valid for small deformations
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P and y are defined as follows:
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The volume element is a product of two factors, the
first depending solely on the collective coordinates,
and the second on the s„&. The latter is of no impor-
tance for the discussion of this paper. The collective
part has the form

only) are responsible for the large number of nuclei
with positive electric quadrupole moments.

The transformation (Ref. 1) is defined by (r„are
space vectors of the nucleons in the center-of-mass
system)

r = sn&~) + sn2~2+ sn3y3

with the constraints
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Here @, 0, and Q are Euler angles defining the directions of the three orthogonal vectors y; in the laboratory sys-
tem. In terms of y, P, and y the part of (6) depending on yi, y2, and y3 ls

(y " dy) g (A, P, y) I sin P sin3y I dP dy,

with

g(A, P, y) = (cos3P ——,
' sin P cosP+ —,'&2sin3P cos3y)" 4(cos P ——', sin P cosP ——,', J2sin3P cos3y).
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The volume element in the theory of Bohr and Mot-
telson6 is

draM =
I sin P sin3y I dP dy.

The consequences of the additional factors in (7) will
be discussed under the assumption of axial symmetry,
that is, y= nor/3 Throughout th.e derivation wave
functions will be used which have equal amplitudes for
the prolate and the oblate shapes of nuclei. In the
Bohr-Mottelson theory one would then have a vanish-
ing collective quadrupole moment, while here it is pos-

+"+= [5(1—cosy) +5(1+cosy) ]X'X. (10)

No y dependence of X is assumed, so that one has the

itive because of the change of the volume element
when going from prolate to oblate shape or vice versa,
that is, when replacing y = n 7r/3 by y = ( n/3+ 1)m.

To obtain axial symmetry it is assumed that the
wave function W has a very strong maximum at
cos2y=1. The extreme case of a 8 function is as-
sumed for simplicity,
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I prolate shape is in any case larger, and in most cases
large compared to the probability for oblate shape.

The effect is enhanced by the y-dependent factor in
(7). yis defined by

(13)

Requiring that the distances of the nucleons to their
nearest neighbors do not change when deforming the
nucleus, one can show that y2 must increase with ~p~,
but more strongly for the prolate than for the oblate
shape. Therefore, qualitatively it has the same effect
as that of g, Eq. (8), but a numerical check showed
that the effect of g is much stronger. Hence, in the
following it is assumed that the expectation value of y2
for given p is the same for prolate and oblate shapes.

The quadrupole moment operator has the following
form for the case of axial symmetry, ~ with the sum
running over the protons:

(12)g(A, P, o) & g(A, P, ~).
For large A the left-hand side in (12) is large com-
pared to the right-hand side. So the probability for
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announced complete symmetry of Ir between oblate and prolate shapes. As ~sin3y~dy= + (4cos2y —I)dcosy,
integration over y is readily carried out. One obtains with (7) and (8) (Q is the quadrupole moment operator, see
below)

+'Q (y )+g (A, P, y ) ~ sin3y ~ dy = 3X'X [Q (0)g (A, P, 0) + Q (7r )g (A, P, 7r ) ]. (1 )

In the Bohr-Mottelson theory one would have g= 1

and the collective part of Q would yield a vanishing
result from Eq. (11). Here a positive collective quad-
rupole moment is found because of the additional fac-
tors g, which behave unsymmetrically when going
from prolate to oblate shape. One may say this in A

more plausible words: The available configuration y'= X r(2.
space is larger for the prolate phase than for the oblate i=1
phase; because, given a certain interval b,p, the proba-
bility to find the nucleus within this interval and with
the prolate shape is proportional to X"Xg(A, p, o)hp,
while the probability for the oblate shape is
X"Xg(A, p, m)Ap. The latter is smaller. The reader
may easily check this for all A & 4 and the known de-
formations p:

Nuclei near closed shells are not considered, because only nuclei between closed shells have the large and predom-
inantly positive quadrupole moments. Their wave functions are well described in the strong-coupling approxima-
tion and are proportional to

DJJJX,,+ ( —)I+~DJJ JX, (15)

Here X&J is the wave function in the body-fixed frame of reference and depends on the s„& and the spins only. j is
the total internal angular momentum and J its projection on the symmetry axis, which is equal to the total angular
momentum. For the dependence of the wave function 'Ir on the collective coordinates it is assumed that there are
strong maxima for sPecial values of yp and Pp, again 5 functions are assumed for simPlicity:

X'X = N p(y —yp)~(p —pp) IIDJJX.J+ ( —) +~DJ JX

Here %2 is the squared normalization factor. %'ith
(14) and (16) one finds for the collective part q, of the
quadrupole moment [that is, the expectation value of
the first term in (14)j
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p = 1.2x 10 '3 fm.
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The factor f(A, pp) is always positive although the
wave function does not show any preference for pro-
late or oblate shape. Numerical values of (18) are
given in Table I for p = 0.25 and J= 2: It is seen that
these quadrupole moments have the order of magni-
tude of the experimental values.

In reality the wave functions will show preferenc:es
for either oblate or prolate shape. That means, for Eq.
(10), that the two 5 functions will have different fac-
tors. The collective quadrupole moments will then be
either above or below the average values, which are
roughly those of Table I.

In conclusion it can be said that the many-particle
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TABLE I. Collective quadrupole moments for wave func-
tions which show no preference for oblate or prolate shape.

Qc

(b)

show the preference of nuclei for the prolate shape.
But as these calculations use ordinary single-particle
coordinates and are performed on a computer, the
simple reason for that property could not be seen.
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coordinates4 have helped to find the simple reason for
the mostly positive electric quadrupole moments of
nuclei. It is the change of the volume element when
going from prolate to oblate shape, or —in other
words —the difference in the available configuration
space between prolate and oblate shapes.

Shell-madel calculations including many nucleons
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