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New Approach to the Statistical Properties of Energy Levels
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The joint distribution of energy eigenvalues of a Hamiltonian is derived by means of the usual
statistical laws of classical many-body systems. It makes a transition from the Poisson type to the
Gaussian type depending on the value of a single parameter characteristic of the Hamiltonian.
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The random-matrix theories have been the most
powerful tool for the study of the excitation spectra of
heavy nuclei in the neutron-capture region. ' Among
others the Gaussian orthogonal ensemble (GOE) has
given the best account of fluctuation phenomena of
neutron resonance levels in nuclei. Although compar-
isons are still limited, the atomic- and the molecular-
level fluctuations also fit the GOE prediction signifi-
cantly. 3 Despite the different natures of interaction,
either strong short range or electromagnetic long
range, they indicate the universality of level fluctua-
tions in complex bound systems. The remarkable suc-
cess of the random-matrix theory naturally raises the
questions: What is the origin of the randomness?
What is the origin of the universality of level fluctua-
tions? Recently numerical calculations of the quantal
spectra of two-dimensional Hamiltonian systems have
paid much attention to the exploration of the
quantum-mechanical manifestation of classical chaotic
motion in level fluctuations. There are some numeri-
cal evidences that the fluctuation patterns show a tran-
sition from the Poisson type to the GOE type as the
corresponding classical system shifts from the integ-
rable to the chaotic regime. 4 5 It raises another ques-

dx„/dt =p„,
2

fnm

m(wn) (xn xm )

tion: How do the specific features of the Hamiltonian
influence the patterns of fluctuations' ?

In this paper I wish to answer these fundamental
questions by making use of the laws of ordinary statist-
ical mechanics instead of introducing a priori ensem-
bles of random matrices. The important attempt to-
ward the resolution of the problem was initiated by
Pechukas6 who studied the motion of energy spectra in
the semiclassical limit as A varies to zero. Here, I shall
consider the motion of levels for a system defined by
the Hamiltonian

H =Hp+tV,
as the perturbation strength t increases. The eigen-
values Ix„(t)) are assumed to be discrete and nonde-
generate except for accidental degeneracies. The
eigenfunctions I@„(t)]are real orthonormal and form
a complete set. The equations of motion for x„(t) and
the various matrix elements V „(t)= ($ (t)

~
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x ~Q„(t)) can be obtained from the stationary
Schrodinger equation together with the completeness
condition in the same manner as in Ref. 6. By the
trivial changes of variables

f .= Ix —x. I V . (n ~ m ),
one gets without any approximation
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There exist infinite numbers of integrals of the
motion. The simplest ones are A, p

= Tr V

(a = 1, 2, 3, . . . ). In general, when the quantity TrG
does not contain t explicitly, it is a constant of the
motion because of the representation independence of
trace. They can be written as A,b

——TrG, b for the
operator G,b constructed by a linear superposition of
the polynomial V H and all the possible combinations
obtained from it by permutations of V and H in such a
manner that the explicit t dependence vanishes; for ex-
ample,

A 2z
—fr [ V 0 —( VH) ],

Tr[ V3H2 V ( VH)2]

A 2b
——X C Tr( VH('VH ") (4)

can be determined by taking the coefficients C„so

etc.
Imagine the motion of N particles (i.e. , N sequences

of levels) in a "box" of size L and take the coordinate
frame such that the box is at rest. Under these condi-
tions the quantities A,b with a = 1 or a ~ 3 are not in-
tegrals of the motion any more, since they contain
terms involving odd powers in p„. The only remaining
integrals of the motion
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that the explicit t-dependent terms cancel:
0= BA2t, /Bt

=2X C X,Tr(VH" VH" " 'VH ") (5)

In Eq. (4) the number of free parameters C„grows
linearly as b increases, while the number of indepen-
dent terms in Eq. (5), i.e.,

Tr(VH 'VH 'VH ')
with n&+n2+n3=b —1, increases quadratically with
b. Thus it will soon become impossible to achieve the
complete cancellation of t-dependent terms by any
choice of C„as b gets larger, and it is enough to con-
sider first several quantities A 2&. In fact, only 3 20 and
322 turn out to be integrals of the motion of the TrG
type. They are written as
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It is interesting to notice that the canonical equations
of motion regarding Eq. (6) as the Hamiltonian coin-
cide with Eqs. (1) and (2).

It is now clear that the system we are considering is
quite analogous to the classical dynamical system of N
particles in one dimension confined in a box of size I.
and interacting mutually through the time-dependent
I/rz potential. Let us now turn to the statistical prop-
erties of this system. The phase space has the dimen-
sionality of 2N+ —,

' [N(N —1)] composed of the
dynamical variables {x„},{p„), and (f„). We denote
them all together as {y,). According to the method of
statistical mechanics we introduce the ensemble of
subsystemss distributed in phase space with a probabil-
ity

dw = p((y, ),t) P dy;.

After a sufficiently long interval of time the system
will be in a state of statistical equilibrium. The con-

I

P((x„)) Igdx„
n

(x —x„)'
1+ (y/P) (x —x„)'
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gdx„, (9)

with the normalization constant

tinuity equation for steady flow gives

X B(py;)
By;

According to the equations of motion the velocities
(y, } are not functions of y, itself. Thus we have
Liouville's theorem

dp/dt = X, (Bp/By;)y; = 0,

which says that the distribution function must be ex-
pressible entirely in terms of the integrals of the
motion. %e have constructed two integrals of the
motion E and Q which are additive. Since it is
known' that in a finite-dimensional space a11 the in-
variants under orthogonal transformation can be ex-
pressed in the form TrG, there should be no other in-
tegrals of the motion. Thus the stationary distribution
function of the subsystems is given by

p =—exp( —PE —yQ ),1

z
with

Z =)/e t'E»Q, . dy, .

The parameters P and y are determined by given
values of the conserved quantities Eo and Qo through
the relationships

B lnZ B lnZ

BP By

As far as level distributions are concerned, the in-
tegrations over the unobserved variables (P„} and
(f„)may be carried out, which gives

CN
—1

X X
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The parameter y/P links the statistical nature of ener-
gy eigenvalues to the Hamiltonian of a particular sys-
tem. Now, I shall show important consequences of the
distribution at extreme limits of the parameter: For
the study of the case of small y/P, Eq. (9) may be
written as

T

P({x ))~ enxp-
m&n

with

A „=—lnlx —x„l+—,
' in[1+ (y/P) (x —x„)'].

If we approximate the second term as

in[1+ (y/P) (x —x„)']= (y/P) (x —x. )',
the level d&stribution reads

p((x„)) exp X lnlx —X„I— y g(x„—xo)'.
2p

(10)

This looks exactly like the distribution of the GOE ex-
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cept for one point: xo ——N 'g„x„ is the center-of-
mass coordinate here, whereas it is an external param-
eter in the GOE. Equation (10) can give a natural ac-
count of the average level density also. In the GOE it
is given by the semicircle distribution due to the
Gaussian factor with a fixed center xo. On the other
hand, the translation-invariant form (10) implies a
constant average density N/L in the box of size L.
Thus we can avoid the difficulty of the GOE in repro-
ducing the average property of levels by approximating
the level density stepwise with the density N, /L; for
the i th energy interval I, .

In the opposite limit y/P ~, P ((x„)) is approxi-
mately constant except near degeneracies x„=x
This distribution is known as the Poisson distribution.
The nearest-neighbor spacing distribution in this case
can be easily calculated, which gives

(L —S) '/(N —1)!
L ~/N!

which reduces to pe ~ in the "thermodynamical"
limit N, L ~ with N/L finite (=p). For values of
the parameter y/P between these two limits we expect,

p( —pE-yg) II I .—.IIId „ IIdv...
rn &n n m ~n

where Q „~x —x„~ is the Jacobian. By integration

over (x„) it reads

dp —exp( ——,
'
P Tr V2)D ( V) I I d V „,

m ~n

with

that the nearest-neighbor spacing will have a form
similar to the Brody distribution, "i.e.,

Po(S) —S"exp( —aS"+ '),

since Eq. (9) exhibits level repulsion at any value of
y//3

Without introducing a priori ensembles of random
matrices we have derived the level distribution func-
tion by making use of the ensemble in the ordinary
statistical mechanics, i.e. , the ensemble of subsystems.
The relation to the random-matrix theory can be un-
derstood formally by writing the distribution function
in terms of the original variables (x„) and (V „):

t

D(V) = JI exp —y g (x —x„) V II Ix —x, I II„dx„.
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This can be interpreted as the distribution of the en-
semble of random perturbation matrices (V „), where
D ( V) takes into account correlations between the ma-
trix elements. When y = 0, the correlation disappears
(i.e., D =const) and the distribution reduces to the
GOE type for (V „).

In obtaining the distribution (9) I have assumed the
laws of the ordinal statistical mechanics, namely, the
system reaches equilibrium after a long enough time
interval with a canonical distribution for the ensemble
of subsystems. However, the relaxation time should
not be too long since we wish to keep the density of
states constant during the relaxation period. In order
to check its validity I have made numerical integra-
tions of the equations of motion by truncating interac-
tions f' „after the next-nearest levels (i.e., f' „=0 for
~m —n

~

~ 3). The nearest-neighbor spacing distribu-
tions tend to converge to stationary distributions after
reasonable time intervals with the typical relaxation
time ~ 1, while the relaxation of velocities to the
Maxwell distribution is quite slow (r~ & 1). This is
because of the one-dimensional nature of the system
where the energy-momentum conservation law does
not allow the change of momenta in binary collisions.
Faster relaxation of velocity can be expected when we
include more interactions beyond next-nearest ones.
Details of the numerical results will be reported else-
where.

We have limited our discussion to stationary distri-

butions. In principle, there will exist transitional dis-
tributions when a system does not relax to equilibrium
in a reasonable interval of time. ' For example, we
can imagine a system close to integrable so that the
specific nature of the unperturbed Hamiltonian Ho
remains in the level distribution for a long time inter-
val. Thus, there could be a great variety of fluctuation
patterns in nature. However, the universality of the
GOE suggests that most of the Hamiltonians of com-
plex bound systems such as nuclei, molecules, and
atoms have small values of y/P. It will be desirable to
calculate the parameters P and y for various Hamil-
tonians to understand the universality. Also, the cal-
culation in two-dimensional Hamiltonian systems will
give us important information about the relation
between classical chaos and the quantal spectra.
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