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Numerical studies of the dynamics of finite quantum spin chains are presented which show that
quantum systems with few degrees of freedom (N = 7) can be described by equilibrium statistical
mechanics. The success of the statistical description is seen to depend on the interplay between the
initial state, the observable, and the Hamiltonian. This work clarifies the impact of integrability and
conservation laws on statistical behavior. The relation to quantum chaos is also discussed.
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Until recently it was believed that the laws of statis-
tical mechanics were applicable only to systems with
many degrees of freedom. This view has been revised
by recent studies in classical nonlinear dynamics which
show that classical mechanical systems with very few
degrees of freedom can exhibit dynamical behavior
which is indistinguishable from a random process. '2
Here we ask whether the deterministic evolution of
quantum systems with a few degrees of freedom can
also exhibit statistical behavior. Specifically, we ask
whether the expectation values of observables ap-
proach equilibrium and whether the equilibrium values
can be predicted by the methods of quantum statistical
mechanics, namely the use of the microcanonical and
canonical ensembles. 3 We emphasize that these pre-
dictions do not require full knowledge of the initial
wave function but only the gross features (such as the
mean energy) necessary to specify the ensemble. We
will refer to deterministic systems which can be
described with this limited information as statistical.
By studying the quantum mechanisms which give rise
to statistical behavior in small quantum systems, we
hope to gain a better understanding of the foundations
of quantum statistical mechanics. Finally, we com-
ment on the relation of our work to quantum chaos.

We studied the deterministic dynamics of a finite,
spin- —, , quantum chain in a magnetic field described

by the Hamiltonian

N N

H = n X o3( n) o..
3 ( n + 1) + Z X o-t ( n)

n=l n=l

+ y X o 3(n).
n=l

Here o.t( n) and o.3(n) are Pauli matrices at the site n

of a cyclic chain of N spins, a is the nearest-neighbor
coupling, and A. and y are components of an external
magnetic field.

The use of such models for investigation of statisti-
cal behavior in quantum systems has several important
advantages. First, since the Hilbert space has a finite
dimension, d=2~, numerical calculations of the ener-

gy spectra and the time evolution of arbitrary initial
states can be performed to machine precision.
Although much recent work has been devoted to the
study of coupled nonlinear oscillators, numerical simu-
lation of these systems must also restrict the Hilbert
space to a finite dimensionality at the expense of intro-
ducing truncation errors. Second, by varying the
parameters in Hwe can easily explore the effect of ad-
ditional constants of motion as well as complete in-
tegrability on the statistical behavior. In particular,
when y = 0, the Hamiltonian is integrable and can be
diagonalized by the fermion method of Schultz,
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Mattis, and Lieb.
To test for statistical behavior, we evolved various

initial states with seven spins by numerically integrat-
ing the Schrodinger equation and plotted the expecta-
tion values of several observables as functions of time.
We looked for an approach to equilibrium and com-
pared the equilibrium values with the mean values
computed on a microcanonical ensemble. Our main
conclusion from these numerical studies is that both
integrable and nonintegrable quantum systems with as
few as seven degrees of freedom can exhibit statistical
behavior for finite times.

Figure 1 shows typical results for the evolution of
M = ~„a. (n) for a nonintegrable Hamiltonian with
0. =0.5, A. = 1, and y=0.5. Mt exhibits an oscillatory
decay to an equilibrium value around 2.5 from an ini-
tial value of 0. Of course a true equilibrium is never
achieved since the system is quasiperiodic with a rela-
tively long recurrence time.

The average value of Mt over the corresponding mi-
crocanonical ensemble was determined by numerically
computing the energy eigenvalues and eigenvectors
and averaging the expectation values of Mt over the
eigenstates in the interval E +DE with equal weights,
where E is the mean energy of the initial state and AE
is a small interval in energy which must be large
enough to span many energy levels of the system.
(The results should not and did not depend on the pre-
cise value of 4E.) In Fig. 2(a) the magnetization is
plotted against energy for each of the energy eigen-
states along with the microcanonical average computed
with EE=2.0. For the state depicted in Fig. 1, which
had a mean energy E= 4.0, this calculation predicts an
equilibrium magnetization of Mt = 2.5 which is in ex-

cellent agreement with the numerical experiment.
Figure 2(a) also shows the equilibrium values of the

magnetization calculated by evolving a number of dif-
ferent initial states. The associated error bars indicate
the level of fluctuations from the short-time average.
Not only does the magnetization for this system with seven
degrees offreedom approach equilibrium but the equilibri
um values are correctly predicted by the microcanonical
ensemble The. fact that the short time -average of'Mt (t),
which is computed using the full knowledge of the wave

function, is accurately predicted by the ensemble calcula
tion, based only on the knowledge of the mean energy, is
whatjustifies our characterization of the dynamics as sta-
tistical.
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FIG. 1. The expectation value of the magnetization, M~,
as a function of time for a typical initial condition evolved by
the spin Hamiltonian, Eq. (1). The dashed line shows the
statistical prediction for the equilibrium magnetization.
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FIG. 2. The magnetization, M&, plotted against energy for
each of energy eigenstates (small dots) for (a) a noninte-
grable Hamiltonian and (b) an integrable Hamiltonian; the
solid curves represent the microcanonical average of the
magnetization as functions of energy, and the large dots
show the equilibrium values approached in numerical exper-
iments performed with a variety of initial states. The associ-
ated error bars represent an estimate of the typical fluctua-
tions from equilibrium.
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Although lattice momentum was conserved because
of the translational invariance of the Hamiltonian, it
apparently had little influence on the dynamics of ge-
neric initial states. Only if the initial state were an
eigenstate of momentum did we find a difference. In
this case, the evolution of the initial state was restrict-
ed by selection rules and the appropriate ensemble was
restricted to energy eigenstates with that momentum.
Similarly, when the spin system was completely inte-
grable the microcanonical ensemble was found to be
applicable as long as the initial state was not an eigen-
state of any of the conserved quantities. For generic
initial states the constants of motion generally impose
very mild constrains on the evolution of the wave
function in the 2~-dimensional Hilbert space. This is
in contrast to the classical case where all dynamical
variables are sharply defined in any initial state and the
conserved quantities impose very severe restrictions
on the dynamics.

In Fig. 2(b) the equilibrium values of Mt for a
number of different initial states evolved by an inte-
grable Hamiltonian with n =0.5, A. = 1.0, and y = 0 are
compared with the statistical predictions. Deviations
from equilibrium tend to be larger than in the nonin-
tegrable case partly because of degeneracies which
reduce the number of distinct frequencies in the prob-
lem and partly because the observable, Mt, is not a
function of the energy alone but also of the other con-
served quantities that label the state. This latter con-
sideration is apparent in Fig. 2(b) where the magneti-
zation for each of the energy eigenstates increases in
an oscillatory manner over a series of steps in contrast
to the nonintegrable case shown in Fig. 2(a) where the
magnetization is a fairly smooth and monotonic func-
tion of energy.

An additional test of statistical behavior on the fact
that if an isolated system is well described by the mi-
crocanonical ensemble, then a small subsystem should

be described by the canonical ensemble. 3 We choose
spin 7 to be our subsystem, weakly coupled to the
reservoir composed of the remaining spins. Given the
postulate of equal a priori probabilities for the eigen-
states for the combined system, it follows that
P+/P, the ratio of the probablities that spin 7 is in
its upper or lower energy eigenstate with energy +e,
1S

P+ /P = N(E —e)/N(E+ e),
where E is the energy of the combined system, + e are
the eigenvalues of the single spin Hamiltonian,
07 = Aa-i (7) + yo3(7), and N(E + e) is the density of
energy eigenstates of the reservoir, determined by nu-
merically diagonalizing the Hamiltonian for the reser-
voir and constructing a coarse-grained density of states
by smoothing over an interval AE. Since the density
of states for this system was too irregular to replace the
right-hand side of Eq. (2) by a Boltzmann factor
e 2&', Eq. (2) was used directly to test the postulate of
equal a priori probabilities. Numerical solutions for
the evolution of I'+ for both integrable and noninte-
grable reservoirs once again showed an oscillatory ap-
proach to equilibrium which was accurately predicted
by Eq. (2).

Numerous attempts have been made to extend the
concept of chaos to quantum systems. 6 8 However,
these efforts have led to much controversy because
the linearity of the Schrodinger equation precludes the
mixing behavior which characterizes chaos in classical
systems. ' Nevertheless, we find that the solutions of
Schrodinger's equation are rich enough to exhibit sta-
tistical behavior. Moreover, we conclude that the ap-
plicability of statistical mechanics depends in the fol-
lowing way on the three interrelated factors: the initial
state, the observable, and the Hamiltonian. 9

The expectation of any observable, 0, can be ex-
pressed as the sum of a time-independent and a time-
dependent term:

(&) (t) = X lc„(0)I'(nlrb ln) + gxc„'(0)c (0)exp[I'(E„—E

)t](nlrb

lm),
n&m

where c„(0) are the coefficients of expansion of the
initial state in terms of the energy eigenstates ln).
The approach to equilibrium is a consequence of the
phase-mixing decay of the time-dependent piece of
(II) (t). Although the initial state will recur as a large
fluctuation, this recurrence time is long, i, —[mini-
mum level spacing] ', compared with the decay time,
7.d

—[energy spread of initial state], unless the ini-
tial state is an exact eigenstate or very close to one.

The equilibrium value of the observable is given by
the time-independent part of (0). For a generic ini-
tial state with given values of c„(0) the agreement
with the equilibrium values predicted by the micro-
canonical average (with all c„equal for eigenstates in

the interval E +DE) depends on the observable. If
the expectation values are smooth functions of the en-
ergy as in Fig. 2(a), then the short-time average of the
observable will be very close to the ensemble average.
In fact, it is clear from Fig. 2(a) that the statistical
behavior will be obtained for any initial state with a
reasonably narrow spread in energy. Even an initial
energy eigenstate will exhibit a constant value for the
observable which is very close to that predicted by the
statistical theory. An observable which exhibits th1s
property for a particular system could be called a
"good" statistical quantity for that system. '

If the expectation value of the observable is not

1881



VOLUME 54, NUMBER 17 PHYSICAL REVIEW LETTERS 29 APRIL 1985

principally determined by the energy, if other state la-
bels exist and play an important role such that nearby
energy eigenstates have very different expectation
values, then the equilibrium approached in the dynam-
ic evolution of a given initial state may not agree with
statistical predictions based on the assumption of equal
a priori probabilities. Nevertheless, although the ex-
pectation value of Mt for the integrable system shown
in Fig. 2(b) does not show the smooth dependence on
energy that is required of "good" observables, the
time average is in good agreement with the predictions
of statistical mechanics. This can be attributed to the
fact that the generic initial states were nearly uniform-
ly distributed over all the eigenstates of H in the inter-
val E +DE." As a result, the time-independent part
of the expectation of the observable in Eq. (3) was
very close to the equal weight average.

Finally, we come to the role of the spectrum of the
Hamiltonian. A number of different criteria have
been suggested to define quantum chaos by distin-
guishing between the regularity of the energy level
spacing of integrable and nonintegrable Hamiltoni-
ans. 6 s'2'3 However, depsite the fact that our small
quantum system had a distribution of energy levels
which was peaked at zero separation (Poisson type) for
integrable Hamiltonians and exhibited level repulsion
for nonintegrable Hamiltonians (Wigner-Dyson type),
we observed statistical behavior in both cases.
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