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Results of numerical simulations of the evolution of a network of interacting cosmic strings in an
expanding universe are presented and compared with a simple mode1. The results lend weight to
earlier speculations about the evolution of cosmic strings.
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There has been some interest recently in the idea
that topologically stable strings or vortex lines formed
at a phase transition in the very early universe could
later provide the density perturbations needed to ini-
tiate the formation of galaxies.

Central to the idea is an observation due to
Zel'dovich' and later Vilenkin, 2 based on earlier work

by Kibble, 3 that if the network of strings evolves so
that there are a fixed number of lengths of string
crossing each horizon volume at any time, then the
fractional density perturbation produced by the strings
in the surrounding matter as a given scale falls inside
the horizon is naturally scale invariant. If the mass per
unit length is p, , the density of string is —p, /t2. Since
the density of the surrounding matter or radiation
scales in the same way, p —I/Gt2, the fractional densi-
ty perturbation due to strings at the horizon crossing
scale is —Gp, —(m/mpi) where m is the scale of
symmetry breaking and mpl the Planck mass. For
those grand unified theories predicting strings,
m —10'6 i7 GeV is typical and the density perturba-
tions are of the right magnitude to produce galaxies by
today. 4 s Cosmic strings are also predicted naturally in
unified superstring theories. 6

To study the consequences of cosmic strings it is
crucial to understand how they evolve once they are
produced. So far, work in this area has made several
assumptions about string evolution. It has been as-
sumed, for example, that the string density does scale
as t 2. If the string density decreased more slowly,
strings would quickly come to dominate, a cosmologi-
cal disaster. This is the problem we address here.

Strings are initially formed as defect lines in the
orientation of the Higgs field 4& mediating the phase
transition. In the approximation that the phase transi-
tion happens sufficiently rapidly, one may simulate
this process by choosing random orientations for 4 in
regions of size (, the typical domain size after the
phase transition. One then smoothes out these orien-
tations along the shortest path (in internal space) in
going from one domain to the next. Edges which 4&

wraps around are then string segments. The string
density is given by a fixed number of segments of

length ( per volume g . Vachaspati and Vilenkin7
have discussed the resulting spectrum of strings for
cubic lattices. With periodic boundary conditions, all

the strings are in the form of closed loops. The loops
fall into two categories. Loops with radii much smaller
than the box size have a scale-invariant spectrum —the
number density of loops with radii between r and
r+ dr is given by n(r)~ r 4 dr, independent of g for
r )) (. However, there is a constant contribution to
the string density from loops with sizes near the box
size, amounting to 80/0 of the total string density. As
the box size goes to infinity, these become infinite
strings. Both the closed loops and the "infinite"
strings are Brownian, the length L along the string
between two points being given by L~ d'/( where d is
the distance between them. We have repeated their
calculations for lattices up to 703 with similar results,
although we use rms radius for r while Vachaspati and
Vilenkin use the sum of maximum extents. A simula-
tion on a noncubic lattice gave a similar result. a

Of course the initial conditions tell us little about the
dynamics. Luckily, this problem is largely a classical
one —on the scales we are interested in the string
width is negligible and the motion is well described by
the action for an infinitely thin relativistic string, pro-
portional to the area of the world sheet it sweeps out.
The only input from the original field theory is in
determining what happens when two strings cross.
There is a probability 1 —p that they pass through each
other, and a probability p that they break and recon-
nect the other way ("intercommute"). In our simula-
tions, we used directional strings so that the reconnec-
tion was unambiguous. p is hard to calculate, but re-
cent simulations in a simplified model suggest p —l.
In this Letter we examine two cases, p =0 and p =1,
with background metric that for a spatially flat,
radiation-dominated universe. Other values of p and
the case of a matter-dominated universe will be con-
sidered elsewhere. '0 The equations governing the
string motion are, in a convenient gauge, "

x+2 —x(1 —x ) = — —;e= —2—ex (1)R . . 2 1 t) x' . R
R e 8CT e

' R
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FIG. 1. Evolution of a Brownian loop.

where

6 = [x' /(1 —x ) ]'I;
Bx, Bx ' dRX=, X=
8 'rl 9 (T d7)

and x(a-, q) are the comoving spatial coordinates of
the string, o- parametrizes its length, and q is the con-
formal time, given by dt = R dq where R is the scale
factor occurring in the metric

ds =dt —R dx

with R~ t'i2~ q. In this gauge the motion is perpen-
dicular to the string's length, i.e., x x'=0. The ener-
gy in the string is given by

E= p, R e da. (3)

First, we evolved single loops using Eq. (1), with a
second-order method for improved accuracy and sta-
bility. We imposed the conditions x x'=0, e= [x'2/
(1 —x 2) ]'~ initially and then used them as a check on
the subsequent evolution of (1). Figure 1 shows the
evolution of an initially static (x=0) flat Brownian
loop, started with the initial coherence length (0 —h.
h =2t is the horizon distance. As can be seen, the
loop evolves by straightening out on the scale of h.

In our simulations we dealt with the case (0—h ini-
tially. Causality demands that (0 & h, and the brief
period of heavy damping of the strings tends to in-
crease g up to the horizon scale before the strings
evolve freely. Different initial conditions ((0« h)
have been discussed by Kibble'2 who concludes that
the resulting string network evolves in a qualitatively
different way. We will examine this question else-
where. '0

For our dynamical simulations we used an initial
(16/0)3 cubic lattice, and produced strings in the
manner explained above. There were typically 100 or
so loops initially, with 1 or 2 "infinite" ones (i.e. , of
size comparable to the box size). We evolved the
strings using Eq. (1). We found that on smaller lat-
tices with five points per initial segment (0 we ob-
tained results for the energy in the strings within 5'/0 of
the value to which the results converged for higher
numbers of points (8,10,12) and we therefore used
five points per $0 in all subsequent work.

First we examined the case p = 0 (no exchange of
partners). Here the total energy remained roughly
constant. This may be understood as follows. The en-
ergy of loops with r « h is almost constant, the ex-
pansion of the universe having negligible effect on
them. " Loops with r » h are stretched by the ex-
pansion, the distance between two points growing with
the scale factor, d~ t' 2. They are also straightened
out (Fig. 1) so the coherence length (~ t. Thus
L~ d2/g remains constant. The "infinite" strings are
a disaster for cosmology —they cannot radiate away as
small loops can2 5 and their density scales like matter,
quickly coming to dominate over the radiation. Even
though they straighten out, g~ t, the number of
lengths of string crossing each horizon grows as t'i2

Next we examined the case p = 1. Here the situa-
tion is more complicated, due to the intersection of
strings and the resulting production and annihilation of
loops. To check for intersections, we divided space
into comoving cubes of size $0/5. If two points on the
string were found in the same box, we checked the
maximum distance from the points reached by going
from one to the other in each direction along the
string. If this distance was greater then ago/5, we ex-
changed partners. We found the results were insensi-
tive to n for n around 1.5. This is probably the sim-
plest possible procedure for checking for crossing of
strings.

How does the string density scale for p = I? To see
this we must include all loops and the effect of their
interactions. However, as is easy to check, the proba-
bility for a loop with f « t to interact with another
loop is negligible. These smallest loops have almost
constant energy and their density scales like matter.
They radiative graviational waves5 7 at a rate
M ——100Gp, 2 and since their mass is M —p, x 27rro,
they have a lifetime 7. —ro/10Gp, » ro (ro is their in-

itial radius). This gives a cutoff in the distribution of
loops at any particular time t, at r, (( t. In our simu-
lations we did not have the range for this, but since
these small loops hardly interact at all, we did not need
to. Instead, we used a radius cutoff r, at a fraction of
h, and then varied this cutoff to see the effect of the
smaller loops. With a simple model we could then ex-
trapolate to include smaller loops for any value of Gp, .
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In Fig. 2, the quantity pt2/p, is plotted against
H = 2( tot)'/ /16/o. p is the density in string loops with
radii larger than r, =0.1(2t). H is the ratio of the hor-
izon distance to the size of the box. We ran our simu-
lations until H

—h and finite-volume effects became
obviously important. The range shown «( H ( —, ,

1 5

represents a factor of 100 in time t.

The three different plots correspond to different
choices of initial values Ho F. or Ho = +6, so that

go=2to, pt2/p, rose smoothly as t'/2 as in the p=0
case. For Ho = —,', , (o = ,' to, p—t/p, dropped abruptly
and then leveled off. For Ho= 3.7/16, (a=2to/3 7, an.
intermediate case, pt2/p, rose slightly, fell slightly and
then leveled off.

The results tnay be understood in terms of the fol-
lowing simple picture. The string network has a
"stable" state with ( some fraction of the horizon dis-
tance. If (o is larger than this, the rate of intersection
of strings is lower than at the stable point and the
number of string lengths per horizon grows as it did in
the p =0 case. If go is smaller than the stable value.
the rate of intersection is larger than the stable value,
and more closed loops are produced by the self-
intersection of long strings, reducing their density to
the stable value. In fact we find that the energy densi-

ty due to loops with r & 2t is given in the stable regime
by

p, ~2, = (2.5 +0.5)p/t~, (4)
which corresponds to roughly one segment of length t
per volume t in qualitative agreement with the
behavior in Fig. 1 and the above picture.

Now we turn to the energy-density contribution of
the smaller loops. To understand this note that since (
grows as t on the network of strings larger than h, the
radius of the loops produced at a time t should be —t.
In fact since the network of larger loops does not come
to dominate, a large part of their energy must flow out
through loops with r —t. These loops may intersect
and self-intersect thereafter. One expects the self-
intersection process to be completed in a few expan-
sion times. This is because a loop's motion is almost
exactly periodic inside the horizon, "t3 and if it inter-
sects at all it must do so within a period T —rrr. If it
splits into two, these have a period —7rr/2. Continu-
ing this argument, the process should be over by—2rrr, with the result either that it has completely
disappeared or that it has produced a number of non-
self-intersecting loops. Our simulations show the
latter behavior.

We choose to model the resulting energy density
distribution in loops with the following formula:

' 3/2
1 r'

p, ), (t) =n ' dr'pr'
C

r'4

r

r'2 1+P) dr'p,
4

+
t

where the three contributions are from loops smaller
than the horizon, loops larger than the horizon, and

2tp

! "infinite" loops (i.e. , loops as large as the box we
use). Small loops of radius r' were produced at a time
t' —r' and at a rate I/t' per unit volume. Their mass—p, r' and their density has been reduced by
(t'/t) / since they were produced. The model ignores
the breakup of these loops due to self-intersections
and the fact that it fits the data well suggests that soon
after loops fall inside the horizon self-intersections be-

i
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FIG. 2. Energy density in loops with radii greater than
r, = 0.1(2t) vs H~ t' 2 for different initial conditions.

FIG. 3. Energy density in loops with radii greater than r,
p„vs (r/2t) ' at "steady state. " Dashed lines show fit
with model in Eq. (5).
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agreement with (5). Fitting this part of the curve with
a r ' law we see that data are actually consistent with

y =0. It seems possible therefore that the string net-
work evolves into a distribution composed entirely of
closed loops.

In Fig. 4(a) we show a simulation on a (6go)3 lat-
tice. Several loops were formed by the self-
intersection of lengths of string. The loop marked l
and enlarged in Fig. 4(b) has two cusps and looks very
similar to the exact lowest-mode solutions found in
Ref. 5.

In conclusion, we have given strong evidence that
for p = 1 the string energy density scales as radiation
and does not come to dominate. More detailed predic-
tions will be discussed elsewhere.

One of us (A.A.) thanks the Institute for Theoreti-
cal Physics for hospitality during this work. This work
is supported in part by the National Science Founda-
tion under Grants No. 8304629 and No. PHY80-
18938, and in part by the Robert A. Welsh Founda-
tion.

Note added. —According to our most recent simula-
tions, the constants in (5) are n = 0.21 + 0.03,
y+ P/2 = 2.4 + 0.1.

FIG. 4. (a) Evolved network of strings on a (6(o)3 lattice.
Dots show the points on the string used in numerical evolu-
tion. h shows the horizon scale. The comoving initial
coherence length g is —h/4. (b) Loop marked t in (a) is
enlarged.

come rare. In a more complicated model o. would
depend on r, too. Larger loops have a size distribution
dr'/r'4 as they did when they were formed, r' growing
like R while the volume goes like A3. They are still
Brownian, with length —r'2/t. Finally, infinite strings
have a density —p/t2 o. , P, and .y are the overall nu-
merical factors for each term.

We check this model in Fig. 3. Here the energy
density in loops with radii greater than f is plotted
against (r/2t) tt2 at a fixed time, when the string
density appears to have reached a steady state (when
168=7 on the middle curve in Fig. 2). For r (( 2t,
the distribution is well modeled by the r ' 2 power law
predicted in Eq. (5). Close to 2t, the distribution tilts
over and at r = 2t abruptly drops, in surprisingly good
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