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Symmetry Criterion for the Lack of a Stable Fixed Point
in the Renormalization-Group Recursion Relations
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Within the framework of the e expansion, we establish a symmetry criterion allowing us to
predict if a phase transition is driven first order by the fluctuations. It is expressed in the form of
group-theoretical conditions imposed on the Hamiltonian symmetry. In particular, we specify a suf-
ficient condition for the lack of a stable-fixed-point Hamiltonian. The effectiveness of this condi-
tion is illustrated by its application to Hamiltonians based on four-component order parameters.
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In the framework of Landau's theory of phase transi-
tions, ' the well-known "symmetric-cube rule"' pro-
vides a sufficient group-theoretical condition imposed
on the order parameter for the occurrence of a first-
order transition. Since 1976 several authors2 s have
suggested that similarly, in the framework of the
renormalization-group (RG) method, a group-
theoretical criterion should, in certain cases, preside
over the occurrence of a fluctuation-induced first-
order character. These authors have referred to the
situation where this character arises from the absence
of a stable fixed point (FP) in the flow of Hamiltoni-
ans considered in the RG method in reciprocal space.
Indeed, the lack of a stable FP results from the form
of the fourth-degree terms in the Hamiltonian which is
entirely determined by the symmetry properties of the
order parameter. Thus one could hope to detect the
lack of a stable FP on the sole basis of the former sym-
metry properties and avoid, in certain cases, the actual
solving of the RG recursion relations.

Up to now the specific group-theoretical conditions
defining the Hamiltonians lacking a stable FP had not
been clarified. This problem is essentially of interest
for phase transitions whose order-parameter dimen-
sion n is larger than three since for n ~ 3 a stable FP
always exists. Two previous attempts in this direction
are worth considering.

In the first place, it had been stated that the relevant

symmetry indicator could be the number of linearly in-
dependent fourth-degree terms contained in the Ham-
iltonian. More precisely, there would be no stable FP
if there were more than a small number (three or
four) of independent terms. Recent investigations
by Michel and by Grinstein and Mukamel have
weakened this conjecture. These authors have
displayed examples of Hamiltonians containing an ar-
bitrary number of fourth-degree terms, and neverthe-
less possessing a stable FP, within the e expansion.

On the other hand, Korzhenevskii has examined
the connection between the characteristics of the
stable FP and the group of covariance of the Hamil-
tonian (which coincides with the normalizer defined
hereunder). This author has pointed out, in particular,
that for "low-symmetry" Hamiltonians involving
many fourth-degree terms, the stable FP, if it exists,
should always display an increase of symmetry. How-
ever, no explicit rule was stated for the absence of a
stable FP.

In this Letter, extending the arguments developed
by Korzhenevskii, we are able to establish two group-
theoretical results. The first result specifies the possible
symmetries of stable fixed points. The other provides for
the first time, a sufficient condition for the lack ofa stable
fixed point. These two results rely on the uniqueness
of the stable FP which has recently been established8 9

within the two-loop order e expansion.
The effective Hamiltonian density to consider is

n n

H(x) = —— X&2(x) + X('7@;) + X u, 0„(@;),
1 1 @=1

where the n functions @t(x) are the local values of an n-dimensional irreducible order parameter. The last term of
Eq. (1), which we denote P4, is a linear combination, with arbitrary coefficients u„, of p homogeneous polynomials
0„(@t)of degree four, linearly independent in the vector space generated by the (4+3) monomials of the @; com-
ponents. Each 0„ is invariant under the symmetry group of the high-symmetry phase adjacent to the transition.
P4 is the most general homogeneous polynomial of degree four invariant under the former group.
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The RG method associates to P4 a flow of polynomi-
als depending on the same invariants 0„, and having
continuously varying u „values. Physically, all the

Hamiltonians relative to a given trajectory of the flow
correspond to the same critical behavior. The univer-
sality of the critical behavior stems from the existence
of a stable FP in the flow. The characteristics of the
flow are determined by the recursion relations

du„/d (logx) =p„(u, ), (2)

where A. parametrizes the trajectories (the critical sin-
gularities correspond to X 0) and where the expres-
sion of the p„ functions is known in the framework of
the e expansion. A FP u„' satisfies the set of equa-
tions p„(u', ) = 0, while a stable FP is defined, in addi-

tion, by the positiveness of the real part of the eigen-
values of the matrix (rip„/r)u, ) ~

In order to examine the invariance properties of P4
and of the associated flow, the symmetry transforma-
tions of interest '0 are the linear orthogonal transfor-
mations acting in the n-dimensional order-parameter
space carried by the @;. Three symmetry groups, sub-
groups of O(n), can be defined in relation with the
"full symmetry" of P4 [which is also the symmetry of
H(x)].

The centralizer G, of P4 is the largest subgroup of
O(n) leaving invariant every polynomial (gu„O„)
with arbitrary u „coefficients. In other terms, G,
leaves invariant every vector of the p-dimensional
space E spanned by the 0„. On the other hand, each
given vector in E, i.e., each given polynomial with
specified coefficients u„, has a full symmetry group Go
which is called its little group. Clearly G, is the inter-
section of all the Go (G, L: Go). A group Go can be
regared as the centralizer of a subspace of E (possibly
reduced to the sole direction considered). Finally, the
normalizer Gz of E is the largest subgroup of O(n)
preserving E as a whole. It transforms any polynomial
P4 into a combination of the same 0, but with gen-
erally different coefficients u„. G, is an invariant sub-
group of Gz (G~ & G, ). Consistently, Korzhe-
nevskii had labeled G~ the "covariance group" of the
Hamiltonian H(x).

The RG-recursion relations defined by Eq. (2) have
an important symmetry property which has been
recognized by a number of authors. "' They are co-
variant under the transformations of O(n) This pro.p-
erty expresses the physical requirement that they do
not decrease the symmetry of the system considered.
More precisely, the little group Go of P4 is strictly
preserved along a trajectory except, possibly, at a FP,
where the symmetry can increase. ' Thus, to each
trajectory, a little group Go can be associated. On the
other hand, in conformity with its definition, the cen-

tralizer G, leaves invariant each point of every trajec-
tory. Let us examine the action of the normalizer G&.

As Gz does not change the form of P4 in Eq. (I), it
will leave invariant the set of trajectories composing
the flow of the u„coefficients, as well as the pattern of
fixed points. Each element of Gz will transform a
given trajectory, characterized by the little group Go,
into a trajectory possessing a little group Go which is a
conjugate of Go (i.e., Go =SGOS ', where S 6 Gz).
The action of S 6 G& can be considered as a mere
change of the reference frame in the space of the @;
components, and therefore, it establishes a correspon-
dence between physically equivalent trajectories of the
flow. Likewise, a FP is transformed by S E. G& into a
physically equivalent FP possessing a conjugated sym-
metry group and the same stability, and describing the
same critical behavior.

It has been shown recently that at the lowest con-
clusive order in the e expansion, if a stable FP exists
in the RG flow, it is unique. For na4, this property
could be proveds by means of the one-loop order e ex-
pansion while for n = 4, it has been necessary to exam-
ine the two-loop order recursion relations. This is a
nontrivial result, since the uniqueness of the stable FP
is not a physical requirement. A well defined critical
behavior, which is indeed required, would be achieved
even if several stable FP existed, provided that these
FP were physically equivalent (i.e., symmetry related)
in the manner described above.

This uniqueness imposes the condition that a stable
FP cannot have symmetry equivalents, and accordingly
it puts severe restrictions on its possible symmetries.
Let u„' be a FP in a certain polynomial space E having
G, as a centralizer. The symmetry of u„' is defined as
the little group G' of the polynomial gu„'0„. The
group G is also the centralizer of a space E', contain-
ing u„', and contained in E. If u„ is stable in E, it is
also stable in the subspace E'. From the uniqueness
of the stable FP in E', we deduce that u „' is necessarily
invariant under the normalizer G~ of E . This re-
quires Gg L: G". The inclusion relation between the
normalizer and the centralizer of E' yields the con-
verse relation G" L: Gg. Thus (a) a stable fixed point is
necessarily characterized by the coincidence of the central
izer and the normalizer associated to it: G' = G,

' = Gg.
On the other hand, we can take into account the

uniqueness of the stable FP in the space E. This im-
poses on the normalizer G& of E the condition
G& & G'. This condition can be used in two ways. If
one considers a given FP, and finds that the action of
G~ does not leave it invariant, then this FP cannot be
stable. In a more general way, if we have determined
beforehand for a given value of n the set of groups
G L: O(n) complying with condition (a), we can for-
mulate the following sufficient condition: (b) If'G& is
not a subgroup of at least one of the G, the considered

1833



VOLUME 54, NUMBER 16 PHYSICAL REVIEW LETTERS 22 APRIL 1985

flow in E has no stable fixed point. Criteria (a) and (b)
are well-defined symmetry conditions which can be
worked out on the sole basis of the knowledge of the
Hamiltonian symmetries.

In the first place, a list of the groups G has to be
established for each order-parameter dimension n. In
this view one can use a group-theoretical method
described in Ref. 10 in order to select, up to a conjuga-
tion, all the centralizers of P4 polynomials among the
irreducible subgroups on O(n). This method also pro-
vides, for each G„ the explicit form of the invariant
polynomials P4. Furthermore, the knowledge of this
explicit form permits the determination of the norma1-
izer Gz by examining systematically the action, on P4,
of the groups containing G, and selecting among them
G~. The enumeration of the G is achieved by an in-
spection of the preceding results in order to single out
the polynomials for which G, = G&.

The application of condition (b) to a given Hamil-
tonian consists in the identification of its normalizer
Gz c O(n), and the checking of its possible inclusion
intheG .

It is easy to see that, for any value of n, one of the
G,

' coincides with O(n): On the symmetry basis of
condition (a), the "isotropic" FP is always a possible
stable FP. From previous ~-expansion calculations,
we know that this FP is indeed stable in two situations:

when n ~ 3, and when the Hamiltonian, with n & 3,
has the O(n) symmetry itself. In the remaining cases,
i.e., for anisotropic Hamiltonians with n & 3, the iso-
tropic FP is never stable, and the two formulated
conditions are expected to provide nontrivial results by
considering, in their application, only the G which are
strict subgroups of O(n). Let us examine this applica-
tion in the case n =4.

In a recent work, the centralizers G, and the nor-
malizers G& of P4 polynomials have systematically
been determined for this value of n. Up to a change in
coordinates in O(4), one finds 21 possible forms of an-
isotropic Hamiltonians associated to 21 centralizers
G, cO(4). Only three of these symmetries comply
with condition (a). They represent the possible sym-
metries G,

' (i =1, 2, 3) of stable FP for n =4. Their
characteristics as subgroups of O(4) are detailed in
Ref. 9 and will not be discussed here. We note, how-
ever, that the three corresponding E' spaces have two
dimensions. Also, the G comprise the "hypercubic"
and the "dicylindrical" symmetries which are the sym-
metries of stable FP, determined by the e expansion,
in the examples of (n = 4) Hamiltonians studied
respectively by Aharony' and by Mukamel. '

As an illustration of the use of condition (b), con-
sider the Hamiltonian associated to the polynomial
with five indendent terms:

~4 ttl (X 0 l ) + ~2(4142+ 4344) + +3(4143+4244) + 4(4'144+ 4243) + ~541424344. (3)

As shown in Ref. 9, the normalizer Giv of P4 is a finite
subgroup of O(4), or order 2304, which is not a sub-
group of any of the three G mentioned above. The
lack of a stable FP can thus be asserted for the corre-
sponding Hamiltonian. This result is confirmed by the
effective solving of the two-loop order fixed-point
equations relative to it.

More generally, condition (b) appears very restric-
tive since it allows us to show that among the 21 Ham-
iltonians of interest for n =4, 10 lack a stable FP for
symmetry reasons. For the remaining 11, the solving
of the FP equations discloses the absence of a stable
FP in 6 additional Hamiltonians.

For higher values of n, less precise statements can
be made because of the incompleteness of the infor-
mation available at present on the irreducible sub-
groups of O(n). An incomplete list of the G; for vari-
ous values of n has recently been worked out. '5 It can
be noted, for instance, that for n & 2, the generalized
cubic symmetry in n dimensions always satisfies condi-
tion (a): The cubic FP is always a possible stable FP,
in agreement with the calculations of Aharony. ' The
cubic groups in n dimensions, I'~ „are part- of a set of
groups denoted I ~ (with pq = n). 7 These groups are
of the form I ~~= fO(p)]t&& II~, where [O(p)] t is the
direct product of q orthogonal groups in p dimensions,

and where IIq realizes all the possible permutations of
the q p-dimensional spaces. Each I p q is the centraliz-
er of a two-dimensional space E of fourth-degree poly-
nomials in O(n). Besides, all the I ~~ comply with
condition (a) and are possible symmetries of stable FP.
Actually, they represent the symmetries of one family
of stable FP found in the set of examples displayed by
Michel7 of Hamiltonians with many fourth-degree
terms, and also in the smaller set investigated by Grin-
stein and Mukamel. 5

In the light of conditions (a) and (b) we can see that
the previous inferences relating the lack of a stable FP
to the number of terms in P4, or assigning a high sym-
metry to the stable FP, were, in fact, approximately
correct. Indeed, a low-symmetry Hamiltonian will not
often possess a stable fixed point because the normal-
izer Gz of its many-dimensional space E wi11 generally
(but not necessarily) be a high-symmetry subgroup on
O(n). However, while the earlier conjectures only
provided a general trend, the criteria presented in the
present paper define precise constraints.

Though these criteria are based on a property estab-
lished at the lowest orders of the e expansion (i.e. , the
uniqueness of the stable FP), their formulation in
terms of the essential symmetries of the Hamiltonian
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suggests that they should hold independently of this
approximation. In favor of this conjecture, we note
that in one of the examples' with n = 4 for which con-
dition (b) allows us to assert the absence of a stable
FP, Mukamel and Wallace' have confirmed this ab-
sence by means of nonperturbative arguments.
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E. Brezin and P. Toledano.
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