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Theory of Ballistic Aggregation
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We give a mean-field, continuum treatment of ballistic aggregation on a seed and a line. The
treatment is deterministic, except for one statistical assumption, the so-called tangent rule which
determines the mean direction of growth. Our treatment represents progress toward the explana-
tion of the columnar microstructure.

PACS nUmbers: 68.55.+ b, 05.70.Ln, 81.15.Jj

In recent years much interest has focused on non-
equilibrium aggregation processes, that is, the forma-
tion of structures by the irreversible addition of sub-
units from outside. An example of such a process is
diffusion-limited aggregation (DLA) where fractals
are formed. A simpler problem than the diffusion-
limited case (where the aggregating particles perform
random walks) is ballistic aggregation. In this process
particles moving in straight lines are added to a struc-
ture whenever they touch a previously added particle.
Early work on this problem seemed to show that frac-
tals were produced, but it is now believed both on the
basis of more detailed numerical studies and from
analytical results that ballistic aggregates are amor-
phous solids of fixed density. Nevertheless, the pat-
terns formed in this simple problem are both intrigu-
ing theoretically and technologically interesting. In
Fig. 1 we show two types of ballistic aggregates: one (a
"fan") formed by attachment to a seed4 and another
by attachment to a plane of a beam of nonnormal in-
cidence. 5 In both cases the particles all move in paral-
lel straight lines, as shown, from random launching
points. The similarities of the patterns are striking.
The peculiar long open streaks are the unexpected
feature.

For the case of attachment to a plane these patterns
are known as the columnar micro structure. The
columns form both in computer simulations (as shown
in Fig. 1) and in the real world in vapor-deposited thin
films of both metals and insulators. For example,
aluminum films deposited on cold substrates often
show this morphology. An understanding of this
structure is of particular technological interest as the
surface properties, notably electrical and optical, are
substantially modified from the bulk properties of the
material by the surface microstructure. See Ref. 5 for
more detail and actual experimental results. Even in
the presence of short-range attractive forces among
the atoms, which curve the straight-line trajectories,
columns still form in numerical simulations. The
streaks and columns have not heretofore been ex-
plained.

At first glance, it seems that any such explanation
would be very complicated because the voids clearly
arise from shadowing of one part of the structure by

another. In fact, this is an interesting feature of the
system; precisely the same sort of nonlocal shadowing
produces the fractals of the DLA problem. However,
we will show here that many features of the structures
can be explained in a remarkably simple way.

In the next section we propose a kind of mean-field
treatment for aggregation both on a point and on a
line. We will always consider a situation in which the
particles move in two dimensions. We will consider
coarse-grained statistical fluctuations and try to specify
only the average behavior of a portion of the interface.
In the last section we summarize our results.

A remarkable feature of the columnar microstruc-
ture was pointed out in Ref. 5: Though the columns
fluctuate in direction, on the average they are not
parallel with the incident beam. In fact, an empirical
relation between o. , the angle between the incident
beam and the normal to the plane, and p, the column
angle, is

tanp = —,tanct.

This relation is obeyed with remarkable accuracy over
a wide range of angles. It is easy to see, in a general
way, where this comes from: Particles passing the
"high" side of an existing column can be caught and
cause it to tilt towards the normal, so that p should be
less than o. .

A rough argument for Eq. (1) might go as follows6:

{b)

FIG. l. (a) Ballistic aggregation on a point seed. The
solid lines are the prediction from Eq. (4). The particles rain
vertically. (b) Ballistic aggregation on a line. The direction
of the incident beam is shown.
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Replace the particles being deposited by vertically
oriented rods of length equal to the diameter of a par-
ticle, d. Now rain the rods at random onto a half-line
[see Fig. 2(a)] from a direction n to the vertical. No
rod can land in the shadow of another already deposit-
ed. Since the length of a shadow is d tano. , the loca-
tion of the stick closest to the end of the half-line must
be within a distance d tano. from the end. Its mean po-
sition is just (d tann)/2. The direction of growth of
the edge of the line is given by the angle p, defined by
the direction from the edge of the line to the top of
the rod closest to it, yielding Eq. (1) as an average re-
lationship. This argument has obvious weaknesses.
Whether the reader chooses to regard Eq. (1) as a
result of numerical simulation is a matter of taste. In
any case, in what follows we will adopt Eq. (1) as an
axiom. We will regard it as the rule giving the average
direction of the velocity of a portion of the growing in-
terface of the aggregate which will be described in
coarse-grained continuum language. Equation (1) is
the only statistical feature of our treatment. The rest
of the development is in terms of deterministic growth
equations. Now, since 0=n —p is the angle between
the incident beam and the growth direction (see Fig.
2), and

0 = tan '[tann/(2+ tan n) 1 (2)
has a maximum at 19.5', we would never expect to see
a fan (as in Fig. 1) with an opening angle larger than
19.5 away from the incident direction. In fact, as we
will see below, this limit is precisely attained in off-
lattice simulations of ballistic aggregation on a seed.

We will first use Eq. (1) to formulate the asymptotic
shape of a ballistic fan structure grown on a point seed.
We can assume in the long-time limit that each ele-
ment of interface moves in a straight line. That this
must be so is clear: Otherwise at some point the fan
would show a buildup of density beyond the solid lim-
it.

Consider a situation in which particles moving in the
—y direction rain onto a seed at the origin. Then (see

(b)

Fig. 2)

t)y/t)x = —tann,

y/x = tan(n —p).
(3a)

(3b)

These, together with Eq. (1), completely specify the
problem. Converting to polar coordinates we see that

"rir/riB = r tanP. (3c)

The polar angle, 0, is measured from the y axis, and is
specified in Eq. (2).

It is not difficult to solve this equation. The
relevant branch of the solution is

r =ro f(0),
( + 1)1/4( 1)1/2

(3n —1)'

(4a)

(4b)

(4c)

Here ro is a (time-dependent) constant. It can be
shown that f can be written in a more compact form:

f= (cosn)'/ /cosp.

There are several interesting features of the solu-
tion. The limiting fan angle appears naturally here:
When tan0=1/J8, n diverges. This corresponds to
0= 19.5, as we mentioned above. The significance of
the limiting angle is easy to understand: If we start
with a surface at a larger angle it will move into the
shadow of a less tilted surface and stop growing. In
Fig. 1(a) we have superimposed the asymptotic pro-
file, Eq. (4), on an off-lattice numerical simulation.
The agreement for the opening angle is essentially per-
fect. We have grown and examined ten such fans of
12 000 particles each. Their opening angles are
18.3 1.50', in agreement with our prediction. The
growing front is less well represented by the predic-
tion. We will see the reasons for this discrepancy
below.

Implicit in our postulate of stable asymptotic growth
is the time dependence of ro. We must have constant
asymptotic velocity of growth, ro= rot. The basic as-
sumption of the model is that a constant flux of parti-
cles, J, rains on unit area of fan per unit time. In
length dl of interface we collect

d/2 tan & d tail Q

dN =J coso. dl dt

particles. The area swept out in this time is

dA =fvedi dt

Thus the density is given by

p (e)/p (0) = cosn/f.

(6a)

(6b)

FIG. 2. (a) Geometry depicting average direction of
growth at the edge of half-line. (b) Geometry of the grow-
ing fan.

This relation is plotted in Fig. 3, and compared to
simulation results. Since the density depends only on
the direction of growth relative to J, when
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22.50 45.00 FIG. 4. Numerical solution of Eq. (11) for growth on a
semicircle.

FIG. 3. Density of particles in a fan. The solid line is the
prediction of Eq. (7) and the crosses are simulation results. Neglecting Q altogether we have

r (H, t) = vot cos't2t), (12)

v= vm, (8)

where m is a unit vector in a direction between the in-
cident beam and the normal, as given by the tangent
rule, Eq. (1). To be consistent with the asymptotic
results we take

v= —n J/p =vaf,

where f is given by Eq. (5). We must adjoin to Eq. (9)
the condition that if a surface is in a geometrical sha-

dow, e.g. , if cosa ( 0, there is no growth.
The growth rate of the surface in any direction, e, is

clearly

R =n v/n e. (i0)

For the fan problem we return to polar coordinates and
take e= r. From Eqs. (8)—(10) and some algebra we

find

Br (e, t )/Bt = vo[(I + g') cosa]'t',

Q =Br/rBB,

cosn = (cos0 —g sin8)/(I + Q ) '

(1 1a)

(1 lb)

(11c)

Note that Eq. (4) is an exact solution to the partial dif-
ferential equation (11), with the initial condition of
growth from a point. In general, of course, an exact
solution is not simple to give. We can examine the
first approximation of Eq. (11) in powers of g.

n ) tan V2, it must be replaced by n' in Eq. (7)
where tano. tano. ' = 2.

We now turn to the formulation of an equation of
motion for the growing front. We specify the velocity
of each element of interface whose normal is n:

which reproduces the profile of Eq. (4) to within 4%.
Note that in the entire treatment so far we have not
had to consider nonlocal shadowing. This must be put
in explicitly when one solves Eq. (11) numerically.

We now turn our attention to the stability of the en-
velope function f(9). We slightly deform the profile
and perform a linear stability analysis. Let us denote
the solution given in Eq. (4) by r (O, t). Consider a de-
formation of the form:

r = r +5(O, t).

It is not difficult to show that Bh/Bt = 0 to first order
in 5. Thus the profile is margina11y stable. Of course,
the fractional perturbation 5/r decreases with time.

Many initial conditions which are smooth enough
develop into the fan shape given in Eq. (4), as we can
show by a direct numerical solution of Eq. (11). In
Fig. 4 we show growth of a fan starting from a semicir-
cle.

Let us return now to the question of the "streaks"
in Fig. 1, and consider how they might arise from a
random initial distribution of particles. We represent
this crudely by a condition of the form

8(0, 0) = 5, cos(m 0). (14)

If 50 is small, the marginal stability mentioned above
holds. As soon as 50 is large enough, a geometric sha-
dow can form. Clearly this happens first near the edge
of the fan. Once an area is shadowed it cannot grow
further and a channel opens up. In Fig. 5 we show the
result of a direct numerical solution of Eq. (11) with

5o/r(0) =0.05, and m =44. The streaks and ragged
edges of Fig. 1(a) probably arise in this way.
We now return to the column structure and apply
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FIG. 5. (a) Numerical solution of Eq. (11) for a per-
turbed initial condition (growth on a seed). (b) Numerical
solution of Eq. (11) for a perturbed initial condition (growth
on a line).

the same line of reasoning. A flat surface grows uni-
formly on the average according to Eqs. (8)—(10). It
is, furthermore, marginally stable. 5 An analysis of an
initial condition like Eq. (4) (with 0 replaced by x)
gives the result shown in Fig. 5 (b), which recovers the
column structure in our mean-field continuum approx-
imation.

The analysis given in this paper is exceedingly sim-
ple and attempts only to define certain overall features
of the geometry of ballistic aggregates. No serious at-
tempt was made to account for fluctuations about the
average behavior other than to introduce asymmetric
initial conditions. For example, it seems likely that
the column structure should coarsen with time as a

result of fluctuations. A description of how this hap-
pens could presumably be given starting from what we
have done.

Nevertheless, as it stands, the work is not without
interest. The columnar microstructure is, as we have
mentioned, a ubiquitous phenomena which occurs for
thin films of a large number of materials. The colum-
nar instability has important properties. We regard
this work as a possible first step in a description of
these quantities.
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