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The spontaneous decay of coherent monochromatic sound is dramatically self-enhanced by
parametric amplification. We observed this effect for the first time with 3.25-GHz sound in super-
fluid helium at 85 mK. Starting with a typical intensity of 10 W/m? the sound beam is depleted by
more than 99.9% over just 1 mm of propagation distance. In addition we observed, in contrast to
Landau-Rumer processes, an exponential decay coefficient proportional to the square root of the

initial intensity.
PACS numbers: 43.25.+y, 42.65.Cq, 67.40.Mj

We report the observation of the rapid nonlinear de-
pletion of a sound wave due to enhanced spontaneous
decay using pulsed 3.25-GHz sound waves of intensi-
ties ~ 10 W/m? launched into superfluid helium at
T =85 mK. The observed depletion length is about 1
mm in contrast to the decay length of 20 m which
would be calculated from the kinetic equation that
describes spontaneous decay!-? with neglect of the
parametric enhancement described in this Letter. The
sound propagation is characterized by two regions. In
the first region the impressed sound wave becomes a
pump for the spontaneous decay products, which act as
signals and idlers in a parametric amplifier. The pump
exhibits a rollover depletion which is qualitatively
characteristic of three wave parametric processes.® In
the second region, the intensity of the pump decays
exponentially. Furthermore, we observe for the first
time a coefficient of exponential decay proportional to
the square root of the input intensity. This decay is
the result of the one-dimensional scattering of sound
by noise and is in contrast to three-dimensional
Landau-Rumer processes® wherein attenuation is pro-
portional to noise intensity.

Spontaneous decay of incoherent phonons has been
observed in CaF, by Baumgartner.!® Spontaneous de-
cay of photons!!-1* (known as parametric fluorescence
or spontaneous parametric emission in nonlinear op-
tics) is well known. Pump depletion in the optical case
has been inferred at intensities high enough to create
subharmonic intensity (typically called stimulated
parametric fluorescence!’ or parametric superlumines-
cence).!® For pump depletion of only 0.01% however,
these experiments must use laser powers of 3x 108
W/cm.?2 At these powers stimulated Raman scattering,
self-focusing, and crystal breakdown complicate the
precise interpretation of the results. The huge conver-
sion efficiences (up to 99.9%) for very low input
powers (1073 W/cm?) in the acoustic case described
here demonstrate a new experimental system which
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can be used to study new regimes in strong nonlinear
interactions.

Spontaneous decay occurs in a medium that has an
anomalous dispersion relation for frequency w as a
function of wave number k (i.e., speed increases with
frequency). The decay products have frequencies wj,
w,, and wave numbers ki, k, satisfying

k1+k2=kp, (1)

where the subscript p(=pump) refers to the im-
pressed wave field.

Calculations!~7 of the spontaneous decay of sound in
a fluid, neglecting any parametric enhancement, yield
exponential decay of the intensity /= 7(0)exp(— ayt)
where

a0=h'Bka5/(2407rp), 2)

where B=1+ (p/c)dc/dp (~ 3.84 for helium) with ¢
the sound velocity and p the density. In these calcula-
tions, interactions between the decay products, at fre-
quencies w; and w,, and the initial sound beam, at fre-
quency w, have always been ignored. For incoherent
sources this is valid, but for a coherent source the de-
cay products have exactly the proper frequencies and
wave numbers to scatter resonantly with the beam [see
Eq. (1)]. Under conditions discussed below there can
be a strong parametric coupling between the beam and
its quantum decay products which lead to a dramatic
amplitude dependent decay of the beam on a length
scale much smaller than ¢/ay.

The most important condition for strong parametric
amplification of traveling waves is anomalous disper-
sion. Helium-4 exhibits this property at low pressure.
Anomalous dispersion allows conservation of energy
and momentum [Eq. (1)] for three-phonon interac-
tions,!” and limits the stronger processes of higher har-
monic and sum frequency generation!® characteristic
of linear dispersion. The characteristic distance over
which there is appreciable harmonic generation for

Wit wy= wp;
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linear dispersion is the shock discontinuity length
Ly=1/(BMk), where M is the Mach number of the
coherent sound wave (particle velocity divided by
sound velocity). With some dispersion (normal or
anomalous) the harmonic generation can become re-
versible.1®20 In fact at low power levels, second har-
monic intensity is periodic with length

2L, =2m/Ak, 3)

where L, is called the second harmonic coherence
length, Ak=k,—2k;, and k; and k, are the wave
numbers of the fundamental and second harmonic,
respectively. With greater dispersion, of course, Ak
becomes larger. A rough condition for limiting signifi-
cant harmonic generation requires L. to be shorter
than L or

Ak/k > 7BM. 4

The anomalous dispersion in helium increases with
frequency, satisfying Eq. (4) at or above gigahertz fre-
quencies.

Another criterion for the observation of the pump
depletion is that the depletion time due to nonlinear
effects must be less than the 1/e decay time due to all
friction effects or

BM >> (1/Q)logl E(0)/E;(0)], ()

where E(0) and E,;(0) are the initial pump and signal
energies, respectively, and Q is the quality factor for
infinitesimal waves. When Eq. (5) holds the rate of
amplification will also exceed the loss rate for signal
and idler. Equation (5) is easily satisfied in low-
temperature superfluid helium.

The experimental cell used in this study has been
described previously.? A thin film ZnO transducer
(190-um radius) is deposited onto a sapphire rod
which is 12 mm long or 1.14 Fresnel lengths. The
sound waves launched into the superfluid helium from
the sapphire are reasonably planar and have a smooth
amplitude distribution. Another sapphire rod with a
transducer (100-um radius) is used to receive the
sound waves after some helium propagation distance.
The helium path separation and the mechanical tilt
between the transmitting and receiving transducers are
adjustable as described in Ref. 20. The microwave sig-
nal from the 100-um radius receiving transducer is
preamplified by low-noise GaAs field-effect-transistors
operating at 4.2 K. At room temperature, the signal is
mixed down to an intermediate frequency of 60 MHz,
and the envelope detected with a square law crystal
detector. A boxcar averager is used to measure the
pulse height by adjusting a microwave receive attenua-
tor so as to match the received signal with a fixed
reference level.

A sample of the data taken at saturated vapor pres-
sure and 85 mK is shown in Fig. 1. The received in-
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FIG. 1. Output acoustic intensity at 3.25 GHz as a func-
tion of input intensity for four different helium path lengths

(log-log plot). Data taken at saturated vapor pressure at 85
mK.

tensity is plotted as a function of the transmitted in-
tensity at the frequency 3.25 GHz. A pulsed system
was used with 150-ns width pulses at a repetition rate
of 20 kHz. No sensitivity to pulse width or repetition
rate was observed. The input intensity was roughly
calibrated by measuring the microwave input power,
measuring the round trip insertion loss of the
transmitting transducer, and calculating the effective
area of the sound beam in the helium.

The data in Fig. 1 represent measurements for four
different helium propagation distances. The distances
were measured by the time delay of the sound waves
in the helium assuming a sound velocity of 238 m/s.
The ZnO transducers and the sound wave propagation
in the sapphire rods are linear at these power levels.

For low intensities Fig. 1 demonstrates a linear sys-
tem in which the output power increases linearly with
input power. However, at higher input intensities,
corresponding to a Mach number of approximately
10~4, the output intensity falls off sharply. We be-
lieve that strong parametric amplification of the spon-
taneous decay products is taking place at the point
where the output intensity rolls over and the input
sound wave is being significantly depleted by the
buildup of the ‘‘noise’’ field.

When helium is pressurized above 20 bars, it is
known that the dispersion becomes first linear and
then normal. Normal dispersion is not consistent with
Eq. (1) for any angle between the k vectors. Indeed,
in experiments performed above 20 bars, we have
found an output intensity that did not decrease with
input intensity as in Fig. 1; rather we have found an
output that saturated in a way characteristic of weak
shock formation.?!

In Fig. 2(a) the logarithm of the ouput intensity is
plotted as a function of helium path length for three
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FIG. 2. (a) Output intensity as a function of helium path
length for fixed input intensities. Curves 4, B, and C corre-
spond to input intensities of 10, 20, and 40 W/cm?, respec-
tively. Straight lines drawn through the points in each curve
represent exponential attenuation. (b) The exponential at-
tenuation coefficient associated with (a) plotted as a func-
tion of input intensity. The straight line drawn through the
points corresponds to « varying as the square root of input
intensity.

different input intensities. The data are taken from
Fig. 1. The three data points of curves 4 and B lie on
a straight line of the log plot, indicating that the inten-
sity of the sound wave is falling exponentially with dis-
tance after an initial rollover. Higher input intensities
result in a large attenuation coefficient as can be seen
in Fig. 2(a). In Fig. 2(b), the exponential attenuation
coefficient (a) is plotted a a function of input intensi-
ty in a log-log plot. Again, the data are taken from
Fig. 1. The line drawn through the points corresponds
to a slope of %, i.e., a proportional to the square root
of the input power.

In Fig. 2(a), two regions of the pump decay are ap-
parent. In the first region, as the wave is launched
into the helium, a small proportion of the enormous
number of phonons in the pump spontaneously decay
into pairs of phonons with lower frequencies. These
low-frequency phonons are then parametrically ampli-
fied at the expense of the pump. The distance x; at
which the pump has been depleted to about 50% of its
initial energy E(0) can be estimated using the stan-
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dard solution for parametric amplification.®?? This
distance is

xa = (1/8Mk,)logl E(0)/E,(0)], (6)

where E;(0) is the initial signal energy, M is the Mach
number of the pump wave, £(0)=M>pc?V,/2 with
V, the pump pulse volume equal to the pulse length
times the area of the sound beam in the helium
~107% ecm’. Setting £;(0) = 54w, leads to a value
for x; which is in agreement with our experiment.
The logarithmic dependence in Eq. (6) causes the roll-
over distance to be relatively insensitive to the fact
that E;(0) is small compared to E(0). Equation (6)
applies only after the first signal phonon has been
created by spontaneous decay. The distance for initial
spontaneous decay, x,, is determined by

[EO)/Fwpl(ag/c)x,=1. (7

For this experiment x, ~ 1 A but, for example, at 30
MHz and similar pump energy x, ~ 1 cm.

In the standard solution for parametric processes
only three modes are considered: the pump, the sig-
nal, and the idler. For that case, the pump depletes
rapidly to nearly zero amplitude, the phase relationship
between the three waves changed by &, and the pump
is then regenerated by the large signal and idler. In the
present case, however, many pairs of decay products
have been produced since Xq << x4. These pairs are
not correlated with each other and are independently
amplified. As a result, there is no single regeneration
time, but instead a mix of incommensurate modula-
tion frequencies that eventually lead to an exponential
decay (Fig. 2) which is well described by

a=1(0.17) (wB)[21(0)/pc3]V/2 (8)

where 1(0) = M?pc3/2 is the pump’s initial intensity.

This second region is best understood in terms of a
sound wave interacting with a noise background
wherein all the noise has been created by the pump
and is in resonance with the pump wave. In this sense
this region is equivalent to a one-dimensional scatter-
ing of sound by noise in a nondispersive medium. The
data presented here constitute the first observations
relevant to this long-standing unsolved theoretical
question.?> The attenuation does not vary as the in-
tensity of the noise background as predicted by
Landau-Rumer theory and observed in the sound at-
tenuation in helium.!” Instead, the attenuation as
shown in Fig. 2(b) is proportional to the square root of
the intensity.

It is pertinent to discuss here any other effects asso-
ciated with high intensity sound propagation in helium
which might give rise to the results described in this
paper. In particular, we consider cavitation and
streaming which exceed the critical velocity for vortex
creation. If the sound amplitude in a liquid exceeds a
critical value, then cavitation can occur and cause an
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attenuation of sound. However, evidence from anoth-
er system indicates that the cavitation amplitude
threshold increases linearly with frequency,?* and ex-
trapolation from helium experiments?® would lead to a
threshold far above the sound amplitudes used in this
experiment. On the other hand, the present experi-
mental amplitudes are larger than those used to gen-
erate vorticity in helium from streaming.?®?’ Howev-
er, the acoustic absorption (which gives rise to stream-
ing) is very small in the present experiment compared
to the absorption in the experiments cited above,
which were performed at temperatures above 1 K.
Also, the present experiment used pulsed sound (rath-
er than cw) which greatly lowers the resulting stream-
ing velocity. As already noted, the results given here
showed no sensitivity to pulse width or repetition rate,
which indicates that streaming is not important. In ad-
dition, transient behavior would be expected with vor-
tex effects, since vorticity typically has a very slow de-
cay time (> 1 s).22 However, no transient behavior
was observed in our experiment.

In conclusion, the rapid and highly nonlinear de-
pletion of coherent, monochromatic sound has been
observed in low-temperature superfluid helium. The
depletion is due to parametric self-enhancement of the
spontaneous decay of sound. The rate of exponential
amplification of the signal (spontaneous decay prod-
ucts) is proportional to the amplitude of the sound
wave [see Eq. (6)]. This coherent effect is to be con-
trasted with incoherent feedback instabilities where
gain is proportional to intensity and which on oc-
casions have been improperly labeled as parametric
processes.?? Our work shows that high-frequency
sound wave propagation in low-temperature helium is
a highly nonlinear system capable of entering regimes
not available in nonlinear optics. In future research,
we plan to study the behavior of highly nonlinear
parametric systems, analyze the role of dimensionality
in the scattering of sound by noise, and probe the
quantum noise limit of parametric amplification.

We would like to acknowledge many helpful discus-
sions with C. F. Quate, D. Rugar, R. L. Byer, S. E.
Harris, B. Hadimioglu, R. Youngquist, A. Larraza, and
J. Millovich. This work was supported by the Office of
Naval Research and one of us (J.S.F.) acknowledges
support as a Marvin Chodorow Fellow.

1G. L. Slonimskii, Zh. Eksp. Teor. Fiz. 7, 1457 (1937).

2S. T. Belyaev, Zh. Eksp. Teor. Fiz. 34, 433 (1958) [Sov.
Phys. JETP 7, 299 (1958)1.

3J. Jickle and K. W. Kehr, Phys. Rev. Lett. 24, 1101
(1970).

4T. J. Sluckin and R. M. Bowley, J. Phys. C 7, 1779
(1974).

SH. J. Maris, Phys. Rev. A 9, 1412 (1974).

6M. Cabot and S. Putterman, Phys. Lett. 83A, 91 (1981).

7R. Orbach and L. A. Vredevoe, Physics (N.Y.) 1, 91
(1964).

8R. A. Baumgartner and R. L. Byer, IEEE J. Quantum
Electron. 15, 432 (1979).

9L. D. Landau and G. Rumer, Phys. Z. Sowjetunion 11,
18 (1937).

10R. Baumgartner, M. Engelhardt, K. Renk, and R. Or-
bach, Physica (Utrecht) 107B, 109 (1981).

1R, L. Byer and S. E. Harris, Phys. Rev. 168, 1064 (1968).

12D. A. Kleinman, Phys. Rev. 174, 1027 (1968).

138, E. Harris, Proc. IEEE 57, 2096 (1969).

14T. G. Giallorenzi and C. L. Tang, Phys. Rev. 166, 225
(1968).

I5T. A. Rabson, H. J. Ruiz, P. L. Shah, and F. K. Tittel,
Appl. Phys. Lett. 21, 129 (1972).

16S. A. Akhmanov, V. V. Fadeev, R. V. Khokhlov, and
0. N. Chunaev, Pis’ma Zh. Eksp. Teor. Fiz. 6, 575 (1967)
[JETP Lett. 6, 85 (1967)].

17H. J. Maris, Rev. Mod. Phys. 49, 341 (1977).

18N. S. Shiren, Proc. IEEE 53, 1540 (1965).

190. V. Rudenko and S. 1. Solvyan, Theoretical Foundations
of Nonlinear Acoustics (Consultants Bureau, New York,
1977), p. 86.

20D. Rugar and J. S. Foster, Phys. Rev. B 30, 2595 (1984).

21See, for example, D. A. Webster and D. T. Blackstock, J.
Acoust. Soc. Am. 62, 518 (1977).

22J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S.
Pershan, Phys. Rev. 127, 1918 (1962).

23A. C. Newell and P. J. Aucoin, J. Fluid Mech. 49, 593
(1971).

24E. Webster, Ultrasonics 1, 39 (1963).

25R. D. Finch, R. Kagiwada, M. Barmatz, and 1. Rudnick,
Phys. Rev. 134, A1425 (1964).

26R. F. Carey, J. A. Rooney, and C. W. Smith, J. Acoust.
Soc. Am. 66, 1801 (1979).

273, A. Rooney, C. W. Smith, and R. F. Carey, J. Acoust.
Soc. Am. 72, 245 (1982).

28F. P. Milliken and K. W. Schwarz, Phys. Rev. Lett. 48,
1204 (1982).

29R. Orbach, IEEE Trans. Sonics Ultrason. 14, 140 (1967).

1813



