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Frustrated Optical Instability: Self-Induced Periodic and Chaotic Spatial
Distribution of Polarization in Nonlinear Optical Media

Junji Yumoto and Kenju Otsuka

Musashino shi, -280 Tokyo, Japan
(Received 21 January 1985)

The universal nature of self-induced polarization rotation in nonlinear optical media having a
third-order nonlinearity is depicted in terms of phase-space trajectories characterized by separatrix
orbits. The existence of nonlinear eigenpolarization, and of periodic synchronized spatial as well as
chaotic spatial distributions of the polarization of light, are found in the mutual interaction of coun-
terpropagating laser beams (collinear degenerate four-wave mixing geometry). Such spatial polari-
zation turbulences cause a frustrated optical instability in input- versus output-intensity characteris-
tics, when a fixed output polarization is selected.

PACS numbers: 42.65.Bp, 05.40. +j

Maker, Terhune, and Savage predicted that the axes
of the vibrational ellipse for elliptically polarized light
rotate as a function of distance in isotropic centrosym-
metric media having an intensity-dependent refractive
index. Nonlinear eigenpolarization has been predict-
ed to exist for interfering beams (collinear degenerate
four-wave mixing geometry) in isotropic materials by
Kaplan. 2 He briefly mentioned the possibility of spa-
tial polarization instabilities without theoretical
demonstration. In this Letter, we extend these works
to include anisotropic crystals and provide new views
into the nonlinear theory of wave propagation, in par-
ticular spatial polarization instability.

Nonlinear eigenpolarization, the self-induced polar-
ization-state change for linearly and elliptically polar-
ized monochromatic light, as well as symmetry-
breaking instability, will be shown by use of the
universal phase-space trajectory for a beam character-
ized as having a separatrix orbit in phase space. This
system is explained quite well by nonlinear mechanical

pendulum models (nonlinear optical pendulum equa-
tion).

Nonlinear eigenpolarization and periodic synchron-
ized spatial distributions of polarization will be shown
to exist when the mutual interaction of counterpro-
pagating laser beams exists in anisotropic crystals. The
chaotic spatial distribution of polarization is found
when two beams are not identical in amplitudes.
Time-domain self-oscillations and optical chaos have
been predicted by Silberberg and Joseph for a similar
interfering-beam scheme in a third-order nonlinear
isotropic medium under the limitation of transit time
being comparable to the medium response time. 3 Up
to now, however, optical chaos has, been mostly re-
stricted to the time-domain turbulence in dissipative
systems which are far from thermal equilibrium.

The conceptual model of the system is detailed in
Fig. 1. Assume that there is a forward electric field Et
and a backward electric field E2 propagating along x
with the same frequency co, where x,y, and z lie along
the major axes of the anisotropic crystal. If we set

E; = E» exp {( —1 )j'k»x —j@;» ) y +E;, exp {( —1 )j'k, x —j@;,)Iz,

where i = 1, 2 and j2= —1, the total field E (spatial part) in the anisotropic medium is expressed as

E = E» y + E,z = g, E» exp {( —1 )j'k»x —j@;» ) y + X,E;, exp {( —1 )j'k, x —.jp;, )z.

Here, E» and E;, are amplitudes of E, along the y and z directions, k» and k, are linear propagation constants, and
P& and $„are nonlinear phase terms. The nonlinear components of the polarization along the y and z directions
are expressed as

P,+~= F0{X E,E,E,'+ X~E,E E'+ X E E,E'+ X,E E»E,'}i,

with the assumption that the frequency arguments of Xt3l are ( —co, co, co, —co). These expressions are valid for
anisotropic crystals which belong to the cubic, tetragonal, hexagonal, and orthorhombic symmetry groups. For
anisotropic crystals belonging to other symmetry groups, other small but nonvanishing X tensor components ex-
ist. Additionally, a much more complicated nonlinearity is expected.

In the following analysis, we employ a cubic-symmetry crystal, which does not have a linear birefringence, and
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each component of X(3) satisfies the following. equations":

ky= k, =—k, X~=X,~—= (k/k() )X), X~~=X»~, =X~=X~~—= (k/k() )X2, Xyz~=X~, —= (k/k() )X3.

With the assumption that the crystal is lossless and the time response of X( ) is so fast that the time-varying terms
of Debye's equation are neglected, the propagation characteristics of light are described by Maxwell s equations.

We also assume here that the medium response time ~ is much shorter than the light transit time through the
medium, i.e. , ~ (( L/c(L is crystal length and c is velocity of light). In this regime, the light intensity threshold
for the buildup of time-domain oscillations becomes extremely high. Therefore, we restrict the analysis below to
the steady state. With use of the slowly varying envelope approximation, the following coupled nonlinear differen-
tial equations are obtained for the steady state:

dE(„/ dx = X2ElgE(3 I)y E(3 ') sin (@i + p2) + ,' X3E~E—(,sin2@,

+ ( —1)' X3EiqE(3 i)»E(3 I)~ Sln(@l —@2),

dEI,/dx = —X2E(„E(3—»y E(3 ') sin(@ i + @2)—,' X3E»E—„sin2@;

—( — )' '
3 iy (3-)y (3-;),»n(0t —42).

dQ, /dx = —,
'

Xt (E(' + 2E(3;) )
—X2(E,' + E(3;) —(E;,/E» —Ey/E;, )E(3»»E(3,),cos($t+ $2) )

X3 ( E cos2@;—2 (E,,/Ey —Ey/E;, )E(3;)yE(3,), cos($t —@2)},
EI' = Ei»2 E2, @i

=—@iy
—@;„ i = 1, 2.

Here, we also consider the energy interaction between E) and E2. From Eqs. (4a) and (4b), we obtain

dE, E;
(E(y+E; ) =2E(y E(y+2E' E' =0 i =1 2,

(4a)

(4c)

Therefore, the energy exchange between E& and E2
does not occur.

Let us first analyze a single beam only. In this case,
from Eqs. (4a) —(4c), we obtain

d8(/dx = ——,
' X3E) sin20( sin2$(, (5a)

0 x

aY

Anisotropic Crystal

FIG. 1. Conceptual model of the system.

d@&/dx = —,
' Et cos20( (X& —2X2 —X3 cos2@t), (5b)

tan&( = Et /Ety.

In this respect, let us examine the properties of the
solutions of Eqs. (5a) and (5b) in the phase-space tra-
jectory (0t, @& ) . In particular, Fig. 2 (a) shows the
phase-space trajectory when a centrosymmetric cubic
crystal, KTao 65Nbo 3503 (KTN), is assumed, where
X2/Xt = —0.179 and X3/Xt = 1.081 (Xt = 0.452 & 10
V /m and gt)=0. 136 m/C2). 5 It is clear from the
figure that the present system has two kinds of singu-
lar points, centers (C) and saddles (S). The centers
correspond to the circular polarization, which does not
change its state during the propagation since phase

dE~/d =dE,,/d =0,

d@,/dx = 0.

(6a)

velocity u =0, where

v = [(dH)/dx)'+ (d@)/dx)']' '
Therefore, circular propagation is determined to be
one of the nonlinear eigenpolarizations.

The other nonlinear eigenpolarizations are found to
be linearly polarized light having 0=0', +45', and

90'. However, the linearly polarized light having
0 = + 45' locates at the unstable saddles (S), which are
the cross points of the separatrices. This means that a
slight fluctuation in time from the values of 0 = + 45'
and @= 0' (homoclinic point, potential maxima)
results in a symmetry-breaking instability. Such polar-
ization instabilities are also brought about by random
noise in the stochastic layer6 surrounding the separa-
trix orbit. These behaviors are very much analogous
to the motion of a pendulum which is also expressed
by a separatrix. For an isotropic material,

Xt —2X2 —X3 = 0,

and then the separatrix disappears as shown in Fig.
2(b).

Let us next consider the case of two counterpro-
pagating beams having the same frequency. Nonlinear
eigenpolarizations are found to exist even in this case.
These are obtained by setting
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From Eq. (6a), there are at least three cases which satisfy the nonlinear eigenpolarization condition. These are (i)
@t=@2——0; (ii) @t=$2= +7r/4; (iii) @t= —@z

——+7r/4. In the case of (i), we obtain the following equations
from Eqs. (6a) and (6b):

8ktk28 = (
—4(kt + k2 ) + (kt+ kp) + [3(kt+ k2) (3kt —k2) (kt —3k2) j' }3,

E, —(k, + k, ) a (1 —a') (1+a')

J
2(k, a(1 —6')+ k, (1 —a )b}(1+a2)

(7a)

(7b)

tan0) tan028=
1 —tan 0t 1 —tan 02

k) = X) —X2, k2= —X2 —X3,

a = tan0~, b = tan02, 0), 02& + —m.

(a)

From Eqs. (7a) and (7b), 0t, 02, and E2/Et are
determined for the nonlinear eigenpolarizations. For
example, with the assumption that 0~ equals 40', 02
and EJEt must satisfy —52.41 and 0.466, or —48.35
and 2.154, respectively. Linearly polarized beams hav-
ing their arbitrary amplitude ratio (EQEt) either
parallel (0 t

——02) or orthogonal to each other
(0t=02+7r/2) have been reported to correspond to
the nonlinear eigenpolarizations for the isotropic ma-

terials. When 0t and 02 equal +7r/4, Eqs. (6a) and
(6b) are also satisfied. Then, in the case of (ii) and
(iii), Eq. (6b) is satisfied only when 0; = +45 . That
is, when Et and E2 are corotating or counterrotating
circularly polarized light, they satisfy the nonlinear
eigenpolarization conditions. These polarization con-
figurations have also been shown to be the nonlinear
eigenpolarizations for isotropic crystals.

When two beams have the same polarization at any
spatial point, the polarization states of both beams are
synchronized during the propagation by following
essentially the same trajectory as in Fig. 2(a).

When the polarization states or intensities of two in-
coming beams are not identical, the cylindrical phase
trajectory7 in Fig. 2(a) is destroyed and the chaotic
spatial distribution of polarization is brought about as
shown in Fig. 3, where L = 2 and Et = E2. In order to
assess the spatial optical chaotic nature of the solution
with some confidence, we examined Poincare maps as
shown in Fig. 4, where L =2000. These maps were
obtained by collecting (0t, @t) whenever the trajectory
crossed the constant plane (@2——2n 7r, n = 0, + 1,
+ 2, . . . ). For Et = E2, the individual points are found

to fall in a closed loop, suggesting that the long-term
spatial regularity still remains, even in the chaotic re-
gime. As 0~ approaches 02, the closed loop shrinks.
When 0t =02, the closed loop becomes a fixed point,
which corresponds to the synchronized state. %hen
Et~ E2, the width of the loop widens, and the spatial
chaotic nature in the polarization of light is pro-
nounced. These phenomena may be interpreted by

7C '
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FIG. 2. Phase space trajectory. (a) anisotropic crystal
(KTN); (b) isotropic material.
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FIG. 3. Chaotic spatial distribution of the polarization in
the phase space (0,, @,), where E~ = E2= 5, 0~ = 10',
02 = 40' and @~ = $2 =0' at x = 0.
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the motion of two pendulums coupled nonlinearly to
each other. 7

As a consequence, if we look at either of the two
beams in the chaotic regime, the polarization state of
the outgoing beam changes unpredictably for a slightly
different initial condition. This means that the output
intensity through a polarizer is frustrated by a change
either in the polarization state or in the intensity of the
incoming beam (frustrated optical instability). Such
spatial optical turbulenece of light as predicted in this
Letter is interesting in the sense that it represents a
new example of deterministic instability in a conserva-
tive dynamic system.

Finally, let us briefly describe the experimental pos-
sibility of observing such spatial polarization tur-
bulences. If we assume a KTN crystal, E= 1 corre-
sponds to the power density of 3.4 GW/cm2, which
can be readily attained with a 0-switched yttrium
aluminum garnet laser, where L =1 stands for the
crystal length of 1 cm.
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(a) E, =E,=S,
(b) Ei= E2= S,
E2=5, Hi=10,

FKJ. 4. Poincare maps (L = 2000).
Hi=10', 02=40', pi=@2=0' at x=0;
0 i

= 30, 02 = 40', rt i
= @2= 0', (c) Ei = 3,
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