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PI-Orientation Velocity-Changing Collision Kernels Studied by Isolated Multipole Echoes
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%e report studies of ' 4Yb 'Pl-orientation velocity-changing kernels with resolution sufficient to
observe both classical and wave mechanical features. The measurements employ photon-echo
techniques in which the echo intensity depends on the square of an isolated J=1 multipole mo-
ment for which the velocity-changing kernel is diagonal.

PACS numbers: 34.40. +n, 32.80.—t, 34.50.Fa, 34.90.+q

We report studies of P~-orientation velocity-
changing kernels for '74Yb —rare-gas collisions with
resolution sufficient to observe both classical and wave
mechanical features. These are the first measure-
ments which clearly resolve an anisotropic moment
collision kernel, and are facilitated because the P&

orientation is studied as an isolated multipole which
evolves in velocity space as an independent entity. ' 3

The experiments achieve very high velocity resolution
by employing photon-echo techniques in which the
echo intensity is proportional to the square of a specif-
ic isolated multipole moment, and they permit each
collision kernel to be studied by measuring a time-
dependent decay rate. In this way, P& isolated-
multipole kernels are studied as conveniently as the
Sp PI optical dipole moment investigated previ-

ously. '
Isolated multipoles are studied by selection and

measurement of velocities along the quantization (z)
axis, about which the collision problem in the labora-
tory frame has cylindrical symmetry, Total angular
momentum and parity conservation then require that
the one-dimensional velocity-changing collision kernels
for the P, orientation, po(v, ), and transverse align-
ment, p22(v, ), be diagonal and real, " so that these
moments are decoupled from other 1=1 multipoles
for which the kernels are not diagonal.

Isolated-multipole echo techniques are an extension
of the stimulated (three pulse) echo techniques em-
ployed previously to study atomic velocity-changing
collision kernels. The experiments of Ref. 7 mea-
sured the decay of velocity-space gratings created in
the Na population in order to study population col-
lision kernels. Reference 8 studied Yb 3Pt population
kernels and also obtained information on the differ-
ence of the population and alignment kernels; two sets
of measurements were required for data interpretation
and low velocity resolution was achieved, compared to
the present work.

In the isolated-multipole echo scheme (Fig. 1), a
velocity grating is created in anisotropic moments of
the ' Yb Pj excited state, by use of two suitably po-
larized (e) preparation pulses which are separated by a
time delay Tg, and which propagate in the z direction,
resonant with the 'So P~ transition at 556 nm. This

creates a velocity grating cc cos(kv, Tg) where k is the
optical wave vector, and v, the Yb z velocity. As
shown below, by measurement of the decay rate of
this grating for various Tg, isolated anisotropic moment
collision kernels can be determined. In order to mea-
sure this decay rate with high resolution, a third x-
polarized pulse is applied at a time T3 to induce photon
echo formation, and the polarization-rotated corn-
ponent (y) of the resulting stimulated echo is moni-
tored. The stimulated echo intensity behind the block-
ing polarizer depends on the square of the anisotropic
moment grating amplitude just prior to the third x
pulse. ' Hence, the required decay rates are deter-
mined by measurement of the echo amplitude versus
T3 for fixed perturber pressure and fixed Tg, as is
done in our experiments.

In general, the coupled amplitude equations for the
J=O,M=O and I= 1,M= +1 states can be solved
and used to determine the field behind the blocking
polarizer (y) just after the third (x) pulse, in terms of
the amplitudes just prior to the x pulse at time T3.
This field contains optical polarization terms which re-
phase at a time Tg relative to the third pulse (stimulat-
ed echo) and which depend on either of two aniso-
tropic moments9: (i) the orientation pat(t „T3) when a
grating is prepared in the population difference
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FIG. 1. (a) Isolated-multipole echo scheme. (h) Timing
diagram.
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between the M = + 1 states or (ii) the imaginary part
of the transverse alignment, Imp&(v„T3), when a
grating is prepared in the coherence between the
M = + 1 states. As in Ref. 1 by choice of the prepara-
tion pulses as c= cr+, no transverse alignment is pro-
duced and the orientation is studied; for e= (x+ y)/
J2 no orientation is produced and the transverse align-
ment is studied.

Our experiments employ velocity-selective excita-
tion' so that the active-atom initial velocity v, is
much smaller than that of the perturber for the small-
angle collisions and time scales of these experiments. '
In this case, the diagonal, real kernels are symmetric
functions of the velocity change b, v, = v, —v,' and the
collisional evolution equation determines that a veloci-
ty grating ~ cos(kv, Tg) created in the selected mo-
ment decays exponentially at a rate'

I q( Tg) =
yqk+ „d(hv, ) [1—exp(ikb, v, Tg) ] II'q"(Av, ),

where k, q=1, 0 for the orientation and 2,2 for the
transverse alignment, yqk is the destruction rate (anal-
ogous to the usual depolarization rate), and W~ is the
one-dimensional kernel. During the time T between
the second preparation pulse and the x third pulse, the
stimulated echo intensity decays by a factor
exp[ —2I q(Tg) T], and so determines I ~k(Tg). Note
that diffractive optical-polarization velocity-changing
collisions6 are significant for the long grating periods
Tg employed in our experiments. However, these
alter the grating contrast and the echo amplitude by a
constant factor for fixed Tg and fixed perturber pres-
sure, so that only I q(Tg) is measured when T is
varied.

In the experiments (Fig. 1) acousto-optic intensity
modulation of cw dye-laser (CR 599-21) radiation
( —4 mW) is employed for pulse generation. 6 A small
angle (1—2 mrad) between the preparation (A/0 No.
1) and x-polarized (A/0 No. 2) beams is used to
eliminate background leakage (0.1—0.2 p, W) from
A/0 No. 1 as well as to aid in the distinguishing of two
pulse echoes. A/0 No. 3 protects the photomultiplier
from scattered preparation-pulse light. The Yb vapor-
cell absorption is —30—40% at 350'C. The cell is
placed in Helmholtz coils and shielded with two con-
centric cylinders of Mumetal maintained at a tempera-
ture 380'C well below the Curie point (417'C). This
reduces transverse magnetic fields to a few milligauss,
as measured with a three-axis Hall probe at room tem-
perature. With the laser detuned from the Yb absorp-
tion, the y polarizer is crossed with respect to the
third-pulse (x) polarization. With the laser tuned to
resonance small axial magnetic fields (due to coun-
terwound oven heater imperfections) are then elim-
inated by adjustment of the Helmholtz z-axis field, us-
ing x-polarized preparation pulses and noting where
the stimulated echo signal disappears. This procedure
is checked for both short and long grating periods with
and without rare-gas buffer. Pressure measurements
are made with an MKS capacitance manometer (Model
310, 1-torr range).

For the orientation echo, which is studied in this
Letter, a quarter-wave plate is inserted in the prepara-
tion pulse beam to obtain cr+ polarization. Results of
measurements for Xe perturbers are shown in Fig. 2.

The orientation data are analyzed, in a first approxi-
mation, in two parts: (i) For small Tg, kb, v, T~ —2vr

only for classical small-angle velocity changes. In this
region, the kernel is calculated with use of a classical
small-angle differential cross section which includes a
survival probability taken to depend on impact param-
eter b as exp[ —(b;/b)' ], where b; is the inelastic ra-
dius. '0 This differential cross section is similar to that
of Ref. 8. (ii) For large Tg, kb, v, Tg —2~ for long-
range diffractive velocity changes, and I o( Tg) tends to
the total collision rate yT for the 3Pt state. A Gauss-
ian differential cross section for the scalar van der
Waals potential is used in the kernel. " The orienta-
tion grating decay, exp[ —2I'0(Tg) T], need not be
averaged over initial velocity v,' which is 0 for our
velocity-selective excitation. However, the decay rate
I o( Tg) is only weakly dependent on v, because of the
perturber and active-atom velocity averages which ap-
pear in the one-dimensional kernel. To simplify
analysis, I 0(Tg) is replaced by its thermal average
over v,', so that the three-dimensional kernel contains
an isotropic average over atom-perturber relative
speed v, . The orientation decay rates obtained from
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FIG. 2. Orientation time-dependent decay rate for Xe
perturbers at 350 'C.
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for large Tg, where Pt = 0.28» (y r/yo) qTg and
P2= 0.71ottqTg with 5u the diffractive velocity change,
2'/mb, ~

(M= Yb mass), and q the optical wave vector.
In terms of b, t, the relative velocity-averaged 3Pt total
collision rate is yr = 7.95N~ U„b,t where N~ is the per-
turber density, and U„= (2kT/iu, ) t12 with iu, the atom-
perturber reduced mass.

The dashed curve of Fig. 2 shows the short-Tg fit
using yo obtained as in Ref. 1 and varying yr as the
only free parameter. For the long-Tg data, the upper
curve shows the fit for y„=Q.37yz, predicted for the
extreme diffraction limit, "' with yr from the short-
T fit. The solid curve shows the fit for y„=0.50yz.

Table I gives the results of the analysis for He, Ar,
~nd Xe perturbers. The total cross sections obtained
for Xe and Ar perturbers are in nearly the same ratio,
1.4, as that obtained for Yb optical radiators, con-
sistent with a van der Waals potential, ' and in reason-
able ( —10%) agreement with the results of Ref. 8.
The orientation decay rate ytt, obtained by the method
of Ref. 1, is substantially smaller than the alignment
decay rate of Ref. 8 for Xe and comparable for He.
Since the rank-one and -two decay rates are expected
to be in the ratio 1.12:1'5 for van der Waals forces, the
Xe results are inconsistent. The diffractive kernel fits
the rare-gas data satisfactorily with use of a Gaussian
distribution with the width expected for a van der
Waals (C6) potential" provided that the diffractive
velocity changing rate y„ is 0.5yr instead of 0.37yr
expected for a C6 force. "

The simplified analysis presented here focuses pri-
marily on the AM=0 part of the orientation kernel.
This kernel differs from that of the population, as
studied in Ref. 8, in that the orientation is destroyed

TABLE I. Collision cross sections (T=350'C) (Ref.
13).

Xe

Ar

He

irr (A')

1107 + 4S

789 + 89

258 +16

pro (A')

230 +14

15S +18
87 +5

the corresponding one-dimensional kernels are then
given by Eq. (1) in the approximate form'2

I It( Tg)

for close encounters, leading to I o(Tg 0) yo in-
stead of I tt(Tg 0) =0. Hence, it is not surprising
that the time-dependent decay rate for the orientation
differs strongly from that of a population in the short-
Tg region. Similar results are found in recent studies
of the M = 0, 1 coherence kernels. '6

However, other features expected for the orienta-
tion kernel are neglected in the present analysis. Gen-
erally, the one-dimensional kernel for the orientation
can be written in laboratory magnetic state representa-
tion as Wo (Ati, ) = W+ + (Av, ) —W + (Au, ),
where the first term is the M-conserving (AM=0)
part while the second (negative) term is due to
hM = 2 collisions which flip the orientation. Physical-
ly, this latter process corresponds to the z component
of the 3Pt magnetic moment arriving inverted in the
new velocity group. Our simplified analysis neglects
this contribution. These processes, as well as a sys-
tematic study of the transverse alignment kernel, will
be investigated in future work. Planned improve-
ments in the spectrometer should permit more de-
tailed study of the isolated-moment kernels, including
direct inversion of the measured decay rate I ~"( Tg) by
Fourier transformation, which according to Eq. (1)
determines the complete isolated kernel.
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