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Resonance Widths and Positions by an Algebraic Approach
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The use of nonunitary discrete, irreducible representations of Lie algebras is proposed as a
method for the determination of widths and energies of resonances. The method is illustrated by
explicit application to three kinds of resonances: in transmission over a well, in transmission over a
barrier, and in barrier penetration for a family of one-dimensional potentials, The same procedure
is also useful in an algebraic approach to scattering by a complex (optical) potential, and for
parametrization of the resonant contribution to the scattering matrix.
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Algebraic techniques have proven useful in the
description of bound states in nuclear' and molecular
physics. Recently, we have considered an algebraic
description of the continuous spectrum3 and the
computation of the scattering matrix. An important
aspect of many scattering problems is the appearance
of resonances. These resonances can be identified as
poles of the S matrix, below the real positive energy
axis (in the second Riemann sheet, corresponding to
the lower half of the momentum plane; E = k2,
Imk ( 0). These resonances are known to correspond
to quasibound states of the system whose energy is in
the continuum. By the enforcing of a purely discrete
spectrum such resonances can be approximated as
bound states (whose width is then necessarily zero)
and such an approximation is possible also in the alge-
braic approach. 2 7 The question is whether the quasi

bound states can be described exactly by algebraic tech-
niques.

The purpose of this Letter is to argue that an alge-
braic approach to resonances as quasibound states is
feasible. We shall, for simplicity, consider one-
dimensional problems. Explicit results for the widths
and positions of resonances will be provided for a class
of potentials for which an exact correspondence
between the coordinate representation and the algebra-
ic form exists. The essential new tool is the use of
discrete but nonunitary representations.

In this Letter we restrict our attention to one-
dimensional systems. In configuration space such sys-
tems describe two channels (L,R) which correspond to
the (asymptotic) left- and right-hand-side regions. At
any given energy E= k one can construct a unique
scattering state which describes a wave incident from
the left:

A (E)exp(ikp) + 8 (E)exp( —ikp), p

exp(ik p), p—

The condition for a resonance is purely outgoing waves
in both channels, s 9 namely, A (E) =0. Such bound-
ary conditions correspond to a decaying state and
violate the conservation of flux. The energies which
are the solutions of A (E) = 0 are a discrete set of com-
plex eigenvalues, E=Eo iI /2 The real .part—, Eo, is
interpreted as the resonance energy and I is the reso-
nance width. We shall propose a purely algebraic pro-
cedure which corresponds to the above coordinate-
space approach.

We illustrate the approach by examples based on the
following consideration. For several classes of one-
dimensional potentials, the group SU(1,1) plays the
role of a potential group. 3 6 That means that the basis
for an irreducible representation' is provided by a set
of eigenstates, all at a common, fixed, energy, which
correspond to different values for the strength parame-

ter of the potential. The bound states are obtained as
the basis of a discrete-series representation of
SU (1,1), while the scattering states belong to a
continuous-series representation. " Both types of
representations are unitary as is required by the Her-
miticity of the Hamiltonian and the boundary condi-
tions. For a quasibound state the boundary conditions
correspond to a nonunitary representation. The ener-
gy eigenvalues in such a nonunitary representation can
be complex. For a Hamiltonian with a dynamical sym-
metry these complex energies can be determined
analytically. Both the widths and positions of the reso-
nances can thus be calculated in the proposed algebraic
approach. Since the spectrum of quasibound states is
discrete, the relevant nonunitary representations will
be discrete. Explicit examples for the SU(1,1) group
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are provided below.
We consider the SU(1,1) dynamical algebra with

generators J~,J,:

[J„J+]=+ Jg, [J+,J ] = —2J, . (2)

When the Hamiltonian has a dynamical symmetry it is
a function (we shall use a linear function) of the
Casimir invariant C= J~ —(J+J + J J+)/2 of the
group. Hence, for systems with dynamical symmetry
we shall simultaneously diagonalize the Casimir invari-

ant and the generator J„
C jI,m) =j(j+1)Ijm), J Ij m) =m jI,m). (3)

In the applications below where SU(1, 1) is a potentia]
group, Ij,m) is an energy eigenstate with an energy
determined by j for a potential characterized by the
parameter m.

To examine quasibound states of different types we
consider a class of potentials which was recently stud-
ied (in configuration space) by Ginnochio. '~ This class
of potentials corresponds to the following'3 realization
of SU(1,1):

+ (8/Br ) + (X' —1)y (1—y')/2+ &y [ —i (8/8@) + —,
'

]
J+ ——exp(+i @) J, = —i (II/O@),~[~'+ (X' —1)y']"'

where y is a function of r defined by

r = [invtanhy —(1 —A. )' invtanhy(1 —& )'i y]/&

and X is a constant. The proof that the generators given by (4) do satisfy the defining commutation relations (2) is
tedious but feasible.

The solution of the algebraic eigenvalue equations (3),

(r, @ I j,m) = p, (r )exp(imp),

leads to the Schrodinger equation

[ —(dz/dr~) + V~(r)]QJ (r) = —X (j+ ~ ) QJ~(r),

with an m-dependent potential

V~(r) = —Azv(v+ 1)(1 —yz) —(A~ —1)(1 —y~) [5(1—Az)y4+ (A~ —7)y~+ 2]/4. (7)

E' = —X4 (j+ —,
' )z. (10)

For a complex j, j=n+ip, the representation D~+ is

In (7), the parameter v depends on m (and A. and j)
via

(v+ —,
' )'= m'+ (Z' —1)(j+ —,

' )'.
The potential V~(r) as given by (7) depends on two

parameters v and A. which determine the number of
bound states and the shape of the bottom of the poten-
tial, respectively. 'z In the algebraic description, A. has
a fixed value. A given representation of SU(1,1) cor-
responds to a fixed j. A basis I j,m) of states for a
given representation corresponds therefore to a set of
eigenstates, all having the same energy [i.e., —A.4(j
+ —,

' )~], which belong to potentials V~(r), as given by
(7) with varying strength parameters v=v . The
values of v for the set of allowed m values are given by
(8).

The discrete representations'o DJ+ of SU(1,1) are
characterized by

m= —j, —j+1, —j+2, . . . (9)

When j is real, these representations are unitary (sin-
gle or multivalued) and describe bound states at ener-
gies

nonunitary although still discrete. ' The eigenenergies
are still given by (10) except that they are now com-
plex, E= Eo iT/2, where—

E,= ~'[P' —(n+ —,
' )'], I = 4~'( +n—,' )P. (11)

For IpI & In+ —,
'

I and p(n+ —,
' ) & 0, (11) defines a

resonance of positive energy Eo and width I . For
Eo( 0, I =0 and the states are virtual bound states.
Note that Eo and I depend only on the real and imag-
inary parts of j but not on m.

The nonunitary representation Dj+ with a complex j
has as its basis I j,m) a set of resonances of constant
position Eo and constant width V, belonging to a series
of potentials (7) with m given by (8). The ladder
operators J+ step m by units of +1, as usual. That
the set of resonances above spans one irreducible
representation of SU(1,1) is a consequence of an im-
portant implication of the realization (4) of the ladder
operators: They preserve the boundary condition
3 (E) =0 which defines a resonance in terms of the
asymptotic form (1) of the scattering wave function.
This can be seen directly by taking the asymptotic
form of the ladder operators. The asymptotic expres-
sion preserves the outgoing character of the wave in
the left-hand (y —1) and right-hand (y 1) sides.
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The algebraic determination of the sequence of
ried out, as follows. For a fixed p and for a

nce o resonances of a given potential ( and p ftxed) is now readily car-
p or a given set, (10, of allowed values of m

(9) provides a quadratic equation for j whose solution is
so m, m= —j+n(n=0, 1, 2, . . .),

Comparing with (10) we have for a given potential

Eo„= ()i.' —2) (n + —,
' )' —Z'(p+ —')'p 2 ) I 2(2n+ I)[($2 1)(n+ )2 g (p+ 2 1/2+2 (12)

hen X ) 2 and n is large enough so that E 0,
) specifies the positions and widths of the reso-

nances. Potentials of the form (7) with h.2) 2 resem-
ble the Poschl-Teller' form (X= 1) but are flatter at
the bottom. As )i. increases, their form resembles a
square well which is well known to have resonances in

f
its transmission. For the potential (7) th
orm of the scattering wave function in configuration

space can be analytically determined. '2 We have veri-
ie [see also the discussion of (14) below] that the

energies and widths (12) are the very same as those
determined from the boundary condition A (E) =
imposed on the scattering solution (1). Here of
course, the resonance positions and widths have been

etermined in a purely algebraic fash'o
For

s ion.
or the resonances (12) to be sharp (I'„« Eo„)

hav
and nonoverlapping (I & E —E )Qii + i oii we need to

ave roughly A. p )) 1. Figure 1 shows th 1 f
p =, =, and the transmission coefficient versus
energy. Energy is measured in units of the well d the ep

The resonances that we have so far di do ar iscussed
ave t erefore a clear scattering interpretation in

terms of the transmission (at positive energies) across

t

the well.
Another type of resonance is for transmission

a barrier. A

'
sion across

b
suitable class of potentials is

y (7) except that now we take t b
s is again given

~ ~

e I o e complex and
specifically p = ——,

' +iq, so that p(p+1) =-
rier. T e ositi
The potential (7) remains real b t du now escribes a bar-

(12).
rier. e positions and widths are here toooo, given by

Finall we cy ome to the more familiar ty e of
nance in one-dim

pe o reso-
e- imensional systems —a particle tra d

within a hollow. 's A
rappe

suitable class of potentials is
again given by (7) provided that X )) p (or )i. )) 71).
The resonances are given b (12) F'y . igure 2 shows the
potential and the resonances in th tin e ransmission.

ork is in progress along several directions. F' tirs,
xtension to more degrees of freedom.

Once we allow two or more spatial coordinates a new
type of resonance is oe is possible. These, sometimes called
"closed channel" resonances ' d
which when turne

s, are ue to a coupling
w ic w en turned off leaves a bound state embedded
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in a continuum. Such resonances have already been
approximated in an algebraic approach as bound
states. 7 The algebraically computed energies of such
bound states compare quite well with the positions of
the resonances determined via a scattering computa-
tion'7 (in configuration space) . It remains, however,
to determine the widths of such resonances by an alge-
braic approach.

This Letter has emphasized the use of nonunitary
but discrete representations for the determination of
resonances. The unitary but continuous representa-
tions are spanned by the scattering states of potentials
which are real valued. 3 4" It proves possible to use
nonunitary and continuous representations for the
scattering by complex-valued (e.g. , optical) potentials
and further work is forthcoming.

In terms of understanding the fundamentals it
should prove worthwhile to establish the connection
between the present algebraic approach and the recent-
ly much studied' configuration-space procedure based
on complex scaling [r r exp(i0) ] of the coordinates
and sometimes known as "dilation analyticity. "

Finally, an interesting potential application is to-
wards a parametrization of the scattering matrix in
terms of the resonances, and the bound states. s On
the practical level, for an isolated resonance which is
near the real axis, the resolution of the scattering ma-
trix element into a slowly varying background term
and a Breit-Wigner-type resonant term is useful,

SiJ = SIJo —i y, y&(E Ep iI /2). (13)

Here ~y; ~
is the partial width in the i th channel and So

is the background contribution. The transition proba-
bility will, in general, manifest interference between
the background and resonant terms in the amplitude
and so an algebraic parametrization for the background
term is necessary. The present examples (cf. Figs. 1

and 2) are for reflection symmetric potentials where
one can show (e.g. , using WKB wave functions) that
the interference term vanishes at the, resonance ener-
gies. Hence at the vicinity of the resonance energy the
transmission coefficient should have a pure Breit-
%'igner form and equal exactly unity at Eo. This
behavior is nicely reproduced in the exact results
shown in Figs. 1 and 2. The expression for

~
T

~
can

be analytically determined'2 and can also be derived by
algebraic means' through the continuous unitary
representation of SU(1,1). The result is, '2 in the
present notation,

(14)

where I'(z) is the gamma function. j is related to the

energy E= k2 by j= ——,
' + ik/A[. cf. (11)]. Inspection

of (14) suggests that even the longer-range goal, s

namely, a parametrization of the energy dependence of
the scattering matrix entirely through its singularities,
may be possible by algebraic means.
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