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Fractals with Local Bridges

In a recent Letter' Helman, Coniglio, and Tsallis ar-
gued that a linear chain (fracton dimension dr, = 1) ar-
ranged in d-dimensional space so as to have a fractal
dimension df (not too much less than d) could be con-
vert'ed into a new fractal with dr, = df by the incorpora-
tion of a sufficiently large number of massless cross-
connecting bridges.

If the bridges are required to be locai (i.e. , of length
much smaller than the linear size of the fractal), then
the argument of Ref. 1 requires some modification,
leading to a significant qualification of the above
result. This is important, because the restriction to lo-
cal bridges is often indicated on physical grounds. The
qualification arises because local (rather than long-
range) bridges are very sensitive to the detailed struc-
ture of the chain arrangement, which is not deter-
mined solely by the value of d~, but can also depend
on many other parameters. I argue here that at least
one of these (the lacunarity) is relevant to determining
the new value of dr, .

Consider, for example, the case of an ideal random
chain ( df = 1) with conducting self-intersections
(bridges), on a lattice in d dimensions. Banavar,
Harris, and Koplik2 studied, by a variety of methods,
an exponent x (d) describing the end-to-end resistance
R (N) of such a chain (of N steps). They found
R(N) —¹", where x(2) =—0.46 and x(3) =—0.73.
Straightforward scaling arguments suggest that
x = z/2, where z is the exponent describing the resis-
tance R (r) between two points on the fractal at spatial
separation r (i.e., R —r'). Then by the Einstein rela-
tion, d„=df+ z, we find dr, = 1.37 in d = 2, and
dr„=1.15 in d=3. Thus, even in d=2, dr, adf when
the conducting bridges are included. This result, 4

which is admittedly at first surprising, arises because
the fractal (if finite) is not space-filling, even though
df= d. Instead there are large "lacunae"5 or gaps
crossed by thin strands or "bottlenecks, " which
hamper the free diffusion of a particle and prevent at-
tainment of d„=2.

A second example is provided by the self-avoiding
walk (SAW). An explicit calculation to order
e =4 —d, and more general considerations concerning
the distribution of contacts within a long SAW, 6 7 indi-
cate that for this case loops are irrelevant in determin-
ing dt, . If we introduce a large number of bridges of

length I, the SAW simply becomes a self-avoiding
sausage of a width comparable to L Thus for time
scales of interest in probing the larger scale chain
structure, d„=2df, and dr, = 1. These remarks should
apply to SAW's in d = 2 and d = 3.

In summary, the inclusion of local bridges in any
fractal will lead to a new value of dr, which depends
crucially on the internal correlations of the original
structure, and not just on its d&. Thus, even if df is
close to or equal to d, dr, ~df unless further special
conditions are met. It seems at least possible that a
sufficient condition is that the lacunarity5 be zero; this
would eliminate the possibility of bottlenecks of the
type discussed above. It is not obvious whether such a
condition is actually met in protein systems of in-
terest, for which the restriction to local bridges is
presumably appropriate.
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