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Flicker (1/f) Noise in Percolation Networks: A New Hierarchy of Exponents
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New results for the magnitude of flicker noise, considered as resistance fluctuations, in random
resistor networks are reported. Near the percolation threshold p„ the magnitude of the relative
noise is shown to diverge as (p —p, ) ". The new exponent K is calculated by various methods:
Monte Carlo simulations, effective-medium theory, and position-space renormalization group. Ex-
ponents pertaining to higher-order cumulants of the resistance fluctuations are also calculated. The
possible implications of our results for ongoing experiments on metal-insulator mixtures and cer-
mets are also discussed.

PACS numbers: 72.70.+m, 05.40.+j

Flicker (1/f) noise' refers to the low-frequency
spectrum of excess fluctuations measured when a con-
stant current is applied to a resistor. That spectrum al-
most always has a power-law form «o with n close to
unity. The origin of this power law has been the sub-
ject of innumerable controversies and is not the pur-
pose of the present paper. Instead, we concentrate on
the behavior of the magnitude of resistance noise in
random resistor networks. Our work is based on two
well-established properties of I/f noise: (a) It is resis-
tance noise2 and (b) the resistance fluctuations are
correlated over microscopic distances only. 3 Our
results have direct implications for ongoing experi-
ments on metal-insulator mixtures and possibly Ni-
A1203 cermets. Namely, we predict that the magni-
tude of the noise diverges as (p —p, ) " when one ap-
proaches the percolation threshold p, . Here K is a new
exponent which is a member of a new hierarchy of ex-
ponents describing the cumulants of the resistance
fluctuations. Evidence6 for the existence of such ex-
ponents has been already given in the case of self-
similar structures.

The purpose of this Letter is to present our model
and to report new results on the magnitude of the
noise, obtained by Monte Carlo simulations, in
the bond-percolation problem on a two-dimensional
square lattice. Our results are compared to the predic-
tions of effective-medium theory as well as to esti-
mates of K obtained with a position-space renormaliza-
tion group. In addition to K, our results confirm the
existence of other exponents and are thus relevant to
the physics of self-similar structures in general. This

new hierarchy of exponents provides a means for the
characterization of a given structure in its fine details
with a large set of independent measurable quantities.

The simplest version of the model can be formulat-
ed as follows. The branch resistances, assumed to
have the same value r, fluctuate independently in time
on each bond with a correlation function whose
Fourier transform is

(Sr (ro)srtt( —to)) = p2(to)h p

As long as each bond resistance fluctuates indepen-
dently with the same spectrum, the explicit frequency
dependence can be discarded. Actually, that spectrum
is of the form p (co) —co . The magnitude of the
relative noise Nit for the resistor network is found'6
from Tellegen's theorem:

~it =—(~R 5R)/R2= ~(x i~)/(X i2)2,

where R and AR are respectively the overall resistance
and its time fluctuation while i is the current that
flows in a branch n in the steady-state obtained
without resistance fluctuations. Explicit frequency
dependence of Att enters via ~ —= p ( )t/or, i.e. , the
relative noise for an individual branch. By means of
Eq. (2), lower and upper bounds for ~„may be
found6:

1/Nt, ~ gtt/g ~ r/R,

where Xb is the total number of conducting branches
in the network. The lower bound is obviously reached
on regular Euclidean networks: ~it ——~ L d, where L
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denotes the length scale of the system, of Euclidean
dimension d. However, for a self-similar network, one
can show that ~z/ ~ = L ~, where b denotes a new
exponent. In general, the exponent b is neither related
to the fractal dimension d nor to the resistance ex-
ponent defined by R (L) = L L. Using Eq. (3), one
deduces that —PL ~ b ~ dz, where d~ denotes the
fractal dimension of the backbone. The exponent b
has been calculated for different families of fractal
structures. 6 In particular, for percolation clusters, one
can show that b = 1 at d = 1 and b = 2 for d ~ 6. In
what follows we shall focus on bond-dilute networks,
where bonds having a resistance r occur independently
with probability p. The noise associated with the
whole lattice, as a function of the filling fraction p, is
one of the relevant quantities that we study.

The simulation method we use for square-lattice
networks is a modification of the transfer-matrix
method7 generalized along the lines of Limieux, Bre-
ton, and Tremblay. s Resistances at the top of the net-
work are grounded while resistances at the bottom are
shunted and fed with a current equal to unity. One
needs the voltages vk at every node k in order to ob-
tain the current in every branch n [Eq. (2)l: i
=ikI=g (vk —ui). Here i is the current in branch n
between nodes k and i and g is the conductance (1/r
or 0) of that branch. Recursion relations for every
voltage node may be derived by the inclusion in the
generating function of Ref. 8 of one source field at
every mode. %e improved the algorithm by isolating
the backbone with use of the method of Herrmann,
Hong, and Stanley. For every lattice size, ranging
from 10X 10 to 23 & 23, about 3000 conducting sam-
ples were studied. All exponents quoted in the follow-
ing page are obtained through standard finite-size scal-
ing analysis7; i.e., calculations are done at p, and ex-
ponents are obtained from fits to log-log plots of the
size dependence of the averaged physical quantities.
Samples which do not conduct are rejected.

For the square lattice our results are illustrated in
Fig. 1, where s(p)/, ~ =~~(p,L)/~jt (p=1,L) is the
normalized relative noise, for a system of linear size L,
plotted as a function of p. Far from p, =0.5, the nu-
merical results follow the effective-medium-theory
(EMT) prediction (see below), s(p)/~ = (2p —1)
to a high accuracy for any p & 0.65. The expected de-
viations from EMT occur near p, as usual. For a finite
system, s (p)/~ saturates at p„where the self-
similarity of the conducting part enters into considera-
tion. Close to p„we rely on finite-size scaling to
analyze the data. %'e make the usual scaling hy-
pothesis:

where g~ = Ip —p, l

"' is the percolation length, and
f(x) denotes a scaling function describing the fractal-

(&R ) —3(SR ) = G ((Br ) —3(hr ) ) (5)

where G2„(n ~0) is defined by G2„= g i " G2„ is.

expected to scale in the fractal regime as 62„—L,
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FIG. 1. Monte Carlo results for the relative noise
s(p)/a =+II (p, L)/+II (1,L) for the bond-percolation prob-
lem on a two-dimensional square L x L lattice (p, =0.5).
Different symbols correspond to different I: asterisks,
L = 1S; lozenges, I.=20. The solid line represents the
effective-medium-theory prediction s (p)/~ = (2p —1)
The inset shows the power-law behavior of g„(p„L)vs L at
threshold.

to-Euclidean crossover. In the fractal regime (x» 1) we expect f(x) to be independent of x, i.e. ,
Az(p, L) —L ~ for (~ && L, whereas in the Euclide-
an one (x « 1) we must recover the L d size depen-
dence, which implies that f(x « 1) —x" with u
= d —b. Therefore, A„(p,L) = L "(p —p, )
which leads to s(p) —(p —p, ) " with K =v~(d —b)
as announced in the introduction. 6 The divergence of
the noise close to p, occurs as expected. The exponent
b has been calculated, by means of the power-law
behavior A~(p„L) —L ~ at p, (see Fig. 1). The
value of b that we obtain is b = 1.16 + 0.02 which, with
v~= —', , implies that ~=1.12+0.02. Note that b lies
within the theoretical bounds —pL ~ b ~ d~ with
—PL = Q.973 +0.005 and dz = 1.62 +0.02 in two
dimensions. ' Bounds for K are trivially deduced from
the above. Note also that ~ appears as an increasing
function of d since it starts from ~ = 1 at d = 1, is equal
to 1.12 at d = 2, and reaches the value ~ = 2 at d ~ 6.

Using the same numerical data, we have been able
to calculate the first members of the hierarchy of ex-
ponents introduced in Ref. 6. That hierarchy is de-
fined with the help of the geometrical factors which re-
late, within the independent-resistor model, higher-
order cumulants of the overall resistance fluctuations
to the cumulants of the individual resistance fluctua-
tions. For example,
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s (P)/~ =
0

p&p„

where p, = 2/z and z is the lattice coordination number.
Note that for the particular case considered here,
g (p) s (p) = g~, where g is the conductivity of a sin-
gle bond and g (p) is the EMT result for the p-

dependent average conductivity. In particular, Eq. (6)
implies that s (p)/~ = (2p —1) ' in very good agree-
ment with our numerical results for the square lattice
(z = 4). For both site- and bond-percolation models,
the EMT leads to s (p) —(p —p, ) ', i.e. , K= 1 in
any dimension. As for the conductance, the EMT
reproduces the correct qualitative behavior close to p„
becomes exact for small disorder (p —1), but fails to
give the exact value of the exponent ~. In this respect,
it should be noted that the naive picture, assuming a
homogeneous behavior close to p = 1, leads to the er-
roneous result s(p) —1/p. The breakdown of such a
picture originates from the fact that, even at p & 1, the
inhomogeneities of the current pattern are enhanced
and lead to a nontrivial behavior of g and s .

In order to go beyond the EMT approximation and
in particular to find estimates for the exponent K for
dimensions (D) other than two, we have used two
position-space renormalization-group (PSRG) trans-
formations, introduced previously for the percolation

For the bond-percolation model, we obtain

xo= —dtt = —1.65 +0.02,

xt = pL = —t/v + (d —2) = —0.978 + 0.01,

xz= b+2pt = —0.81 +0.02,

x, = —0.77+0.03, x,= —0.74+0.02

consistent with the inequalities

x„ t
~ x„~x„~[n/( n —1) ] + ds ( n —1)

(n & 1 in the upper bound). These results confirm
the fact that there are at least four independent ex-
ponents. Our values for xo and xt agree with those of
the literature. Furthermore, the value of b extracted
from x~ and xz is consistent with the one previously
quoted. Note that the quantities which are averaged
over are different in these two ways of evaluation of b.
The asymptotic result" x = —

4
= —1/v can be un-

derstood from the scaling of singly connected bonds. 'z

Far from p„ the behavior of the noise can be ac-
counted for by the effective-medium theory. Such a
theory, previously developed for the conductivity, t3

has been extended for the noise. '4 We give the results
for the bond problem.

We find that the EMT value for the relative noise
s (p), normalized to ~ at p = 1, is

problem'5: differential PSRG and cell transformation.
Using the same notations as Ref. 15, one obtains for
the bond-percolation problem'6

(7a)

(7b)

where a = p/(1 —p) and I(a) =J dx[ln(1+ ax)]/x.0.
Here L tn and L

~~
are as usual the infinitesimal gen-

erators associated with the differential PSRG pro-
cedure. Equations (7) lead immediately to the follow-
ing value of K/v: K/v = (d —1)I(a)/a taken at p= p, .
Using the corresponding values of p, and v, ' one
deduces the following: for 2D,

p, = 2, I(a =1)=m /12:

~/v = 0.822, ~ = 1.339 (v = 1.629);

for 3D,

p, = 0.16, I (a) = 0.18:

K/v = 1.911, K = 2 ~ 332 (v = 1.22).

In the limiting case, d=1+e, «& 1, one obtains
K/v ——(I/2e) e 't', in agreement with K/v = 0 at d = 1.
On the contrary, for e » 1 one obtains ~/v ——e, in
disagreement with the large-d result K/v = 4.

In addition to the differential scheme, we have used
a discrete cell transformation, which reduces at d=2
to the iterated "Wheatstone bridge" construction.
This method has been used'4 to expand s (p) for p & 1

as well as to calculate it exactly over the whole interval
[0.5, 1] with Monte Carlo techniques. Close to p= 1

we obtain s(p)/~ = 1+3(1—p) + O((1 —p)z) in con-
tradiction with the EMT result: s (p)/~ =1+2(1
—p)+ O((1 —p) ). In this respect, the agreement'7
between this scheme and the EMT results at p —1 for
g(p) is somewhat accidental. Furthermore, we have
performed Monte Carlo calculations, up to eight itera-
tions (= 106 bonds). The fluctuations in the Monte
Carlo data for g(p) and s(p) are very small. From the
data near p, (=0.5), where s(p) and 1/g(p) increase
sharply, the critical exponents we obtain are
t= 1.32+0.02 and K=1.70+0.02. The value of t is
the same as that of Ref. 17. However, the value for K

lies outside the exact bounds for percolation. This
overestimation of ~ must be compared with that of t
and I . Accordingly, the iterated Wheatstone bridge,
when viewed as a hierarchical structure, cannot pro-
vide reliable estimates for exponents.

In closing, note that with a correlation function such
as the one given by Eq. (1), the problem at hand is un-
related to that of the sample-to-sample variation'8 of
the resistance of finite systems with p at the percola-
tion threshold.

Our results have direct implications for experiments
on real materials such as metal-insulator mixtures4 and
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possibly Ni-Alz03 cermets at low temperatures, where
the measurement of flicker noise may be worthwhile.
First, the measurement of s (p) as a function of the
metallic filling fraction provides a fine tool for explora-
tion of the geometry of the structure. The magnitude
[Eq. (2)] of the relative noise is more strongly affected
by the current pattern than the squared conductance.
In this respect the critical region (p —p, ) as well as
the region of small disorder (p —1) are of great in-
terest. Secondly, the measurement of s(p) will shed
some light on the microscopic origin of the flicker
noise, be it in the contacts between grains or in in-
tragrain fluctuations.
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Note added. —After this work was submitted for
publication, we received a preprint by L. de Ar-
cangelis, S. Redner, and A. Coniglio [Phys. Rev. B 31,
4725 (1985)1 where, for a different purpose, the ex-
ponents x„were also calculated numerically for n =0,
0.5, 1, 1.5, and 2. Their results agree with ours.
(g2„/v in their notation is —x„ in ours. ) We thank
S. Redner for letting us know of this work prior to
publication.
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