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We have shown that the c '

ield exhibit unexpected features which are dynamical
f' ld b d h
propagates along the perimeter of the plasma

arance o a novel magnetically localized one-dimensional wave which

PACS numbers: 73.20.Cw, 71.45.Gm, 72.15.Gd

char e c
The Lorentz force acting on b d da oun e system of

c arge carriers in a magnetic field can induce charge

whic is a
accumulation at the boundaries. The H 1

w ic is a stationary manifestitation of this phe-
nomenon, has traditionally been 1

'
dexp oite to measure

the charge carrier density. B t 't hu i as not yet been
recognized that the dynamics of a pla p asma in a magnetic
ie in the presence of density inhomogeneit ('

ticular b
ei y in par-

boundaries) has physical aspects which are
more general than the Hall resistance. In this Letter
we present the first theoretical andan experimental
results on the dynamical Hall ff ta e ect in a two-
dimensional classical plasma. Th the eoretical results
obtained in a linearized frictionless h drod

h llproac wi be compared with measurement f h

p on mode frequencies of electrons confined on a
iquid helium surface in a cylindrical cell laced in a

normal magnetic field Hz. The spectrum and its
e seen in Figs. 1 andehavior with magnetic field can b F'

An unusual feature is the existence of modes
ie, in contradictionw ose frequencies decrease with field

to the generally used infinite-geometry rule

field lap asmon frequency and t0, = eH/mc is the cyclo-
tron frequency. ' We shall show that this decrease is
one of the dynamical manifestations of the Hall effect.

We suppose the electrons of mass m and hman c argeeto
be confined to a single region f th 1o e p ane z = 0 by a

the e
set of externally imposed potential h' h ds w ic etermine

e equilibrium charge distribution n, (r) = n err r
a wo-dimensional position vector. We will

now show that the hydrodynamic problem can be re-
duced to an electrostatic one. Th 1 fe on y orce relevant
to their dynamics arises from th - 1e in-p ane component
of the (total) electrostatic field described b
potential ~~r z t&

escri e by a scalar
~~~r, z, t&. The equation of motion of the elec-

tron beam is thus dv/dt = (e/m)%@+ to && v w

is the velocit five oci y ield and eo, = co,z. If we suppose a time
variation + = &&r z ~

linearized equation of motion rewritten as

v= (e/m) (V'2@+to, x V2@)/(a~ —t0 )

with the linearized continuity equation and Ga BUSS ln-

g a o. Poisson s equation to write the boundary con-

u)c =

(dc = 1.6 MHz

(-3,i)(+3,
(b)

(0,1 )

4)g =
0

~ ~
CL

0
V) (c)

(-1,1
I

10 20 30 40 50

Frequency {MHz }

FIG. 1. Part of the ion itgi udinal spectrum of electrons f
densi. ty n 0 ——1.7 x 10

ons o
cm obtained at T =60 mK. The

upper-plate, guard-ring, and correspo d' lon ing e ectron-surface
potentials are respectively —3 —7, d- solid, and —3 V. The

s o (a) mdicate the calculated mode fre-
quencies with and without the d
F

e ensity profile correction.
or t' is densit the so

''
y lid-phase vibration frequenc of th

electron in the i
' ' ' '

s
y o e

N & 1 M
e individual dimple it creates t th fsa esuraceis

coo MHz and can be neglected. The applied ma
field is denoted by the free-

e app ied magnetic
e y t e ree-electron cyclotron frequency N .

The 4, 1) mode is weak
cy N, .

mode.
eak and hidden in the wing of th (1 2)e
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dition for the potential at the charges:

q B@ B@
2 BZ 0

— BZ 0+ Cd

where cu —cu, =27rnoe q/m and Vz ——xB/Bx+yB/By,
'7z@ = 0 everywhere else and Q = 0 on the metallic
confining electrodes.

We see from (1) that the local current j= —en, (r) v
is the sum of a longitudinal current j&

= y&(r, cu) E, due
to the (total) electric field E = —Vz@ induced by
charge motion, and a transverse current j, = y, (r,
cu)zx E, due to the Lorentz force, where y, = (1 —o)2/

cu, ) 'cen, (r)/0 and y&
——y, i cu/co, are the nondiagonal

and diagonal parts of a local ac conductivity tensor y.
The last term in (2) originates from the continuity
equation Bn/Bt + V ji ——j, V a/o, -where n (r, t) is
the induced density, which shows that inhomogeneity,
necessarily present for a finite-size sample, couples the
transverse current to the compression, except in the
case of j,i Vcr. This is the dynamical Hall effect. We
study it in the experimental configuration of electrons
condensed onto the liquid helium surface (z = 0) of a
half-filled cylindrical cell of height D = 2 mm and con-
fined laterally by a circular guard ring of radius R =9
mm. The electrons form a disk whose radius Ro,
charge distribution n, (r), and potential ( —U) are

I a),+V, (o-V,y)+ (V,o-xV,@)=0

The wave numbers k„„, to order (D/nR) and
when k, „D & 1, are given by

uniquely determined by the static confined potentials:
—8'on the guard ring, 0 on the lower electrode, —V
on the upper electrode. The independent potentials al-

low us to reduce the pressing field at low temperatures
without losing the electrons. The disk radius

R 0
——R —s is obtained through sinh (ms/2D)

= ( W —U)/(2 U —V) . The characteristic length of
the edge inhomogeneity of the static density profile
n, = noa(r) -is D/n« R. . The density presents a

limiting behavior (R —s —r)'i at the edge and a pla-
teau n, (r ~ R —s —D/n ) = no ——(2U —V)/2meD near
the center. In this particular static configuration, the
solutions for the eigenmodes take the form of clock-
wise and anticlockwise rotating waves @ +„(r,z)
x cos[cu(k +„)t + v8] and radial waves (when the in-

teger v is zero), whose dispersion relation is
(

~z(k) = cu,z+ (2m. noez/m)k tanh(kD/2). (3)

k+ „„R'J„'(k+„„R')= —v, cosh/In tanh+ + v
Cdc

Cd+y ~ t

1—,ln J„(k+„„R'),
tanhy

(4)

where p = 7rs/D and

8 —sR' = J dr/o(r) =R —s.—(D/m ) In[tanhg(1 —e ~)/4]
0

is an effective radius (or "optical path") for the
plasmon wave. J„and J„' are the integer Bessel func-
tion and its derivative, and co+„„=co(k+„„).The
dispersion relation (3) is the same as for an infinite
medium, ' but the wave numbers k + „„are a function
of the magnetic field through cd, and of the precise
density profile through P(U, V, W). The manifesta-
tions of the dynamical Hall effect are contained in Eq.
(4). For h =0 each azimuthal mode (+ v, p, ) is dou-
bly degenerate: k, „=k,„. In a magnetic field the
wave numbers ko „ofthe radial modes are unchanged,
since the transverse current has no component in the
radial direction. However, the double degeneracy of
the azimuthal modes is lifted through the breaking of
the reflection symmetry by the Lorentz force and the
mode frequencies split linearly in weak field
(QJ& (( Cd + „&).

It is simpler (and no physics is lost) to discuss the
solution of (4) in the limit D/mR'~ 0. In this case
the density is a step function [o-(r) = 1, r ~ R —s, and

@+„„(z= 0) = J„(k+„„r)cos(cut + vO)

for r ~ R —s, and Eq. (4) is equivalent to the vanish-
ing of the radial velocity on the disk edge. In high
field, the mode frequencies all tend asymptotically to-
wards the line cd=co„except for the slowest modes
( —v, 1) which cross the line cu = cu, when co, = c~ [v(v
+1)]' /Ro, where c~ = (7rnoe D/m)' z is the
screened plasmon velocity. On further increase of c0„
the solutions for k „~ become imaginary, k
=iK „, and cu„ t ——co, —c~ K „. As J„(ix)= I„(x)—e"/(27rx)'i2 for x » 1, the wave becomes local-
ized near the edge within a strip of width c~/su, so
tending to a one-dimensional mode of frequency cd

= vc~/Ro which propagates with a velocity c~. This
perimeter wave is analogous to the Rayleigh surface
wave in a solid where the transverse force is replaced
by the Lorentz force. ~ We note that in this limit
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FIG. 2. The longitudinal mode frequencies vs magnetic
field for a density n 0= 7.2 & 10 cm at T = 60 mK. For
clarity the comparison with the frequencies calculated from
Eq. (4) (solid lines) is limited to the modes (0,1), ( 1, 1),
(+1,2). The upper-electrode, guard-ring, and correspond-
ing electron surface potentials are respectively —6, —40,
and —9 V. The solid and dashed arrows indicate the zero-
field calculated frequencies with and without the density-
profile correction. All the calculated frequencies (arrows
and solid line) take into account the small effect of Mp which
is estimated to be 10 + 2 MHz [according to extensive mea-
surements made previously (Refs. 2 and 7 )]. The line
cu=ru, is drawn as a guide (i.e. , co, = 2.8 MHz/G or 100
MHz corresponds to H = 37.7 G). There are no adjustable
parameters.

v, = 0 everywhere and the current I (ppt + vH)
=f j en, dr, in phase with the potential

0
g(r, ppt + vH), satisfies IRH = @~„=tt—$~„p where
RH = H/(ceno) is the static Hall resistance.

These results are consistent with our measurements.
The modes are excited by a meander transmission line
on the lower electrode carrying about 1 nW of radio-
frequency power from a swept 1-400-MHz source to a
detector. The line couples to the electrons by a poten-
tial described by @L(r, t ) = PL expi (ppt —kLr cosH),
where kL = xpp/uL is directed along the symmetry axis
of the line, x r=cos0, and vL =10 cm/sec is the
phase velocity of the principal mode of the line. ~

Rewriting PL (r, t) as PL Q+= (i)"J„(ktr)expi (cot

—vH) shows that both radial (v=0) and azimuthal
(ve0) modes are excited and the coupling is a calcul-
able decreasing function of

~ kL —k +„~. A low-
frequency phase-sensitive detector synchronized with
the modulated upper electrode furnishes an output sig-
nal which is the derivative of the absorption spectrum
with respect to the pressing field. Fart of the experi-
mental spectrum at charge density no= 1.7&&10 cm
at T = 60 mK is shown in Fig. 1. Figure 1 (a) corre-
sponds to zero magnetic field. The absorption modes
( + v, p, ) are unambiguously identified. The solid ar-
rows and the dashed arrows indicate the frequencies
calculated from either Eq. (4) or its limit D/nR'~ 0
for H=0. This shows that the edge inhomogeneity
modifies quantitatively the azimuthal modes. The ra-
dial mode frequency is used as a reference from which
the charge density is deduced. When a small magnetic
field is applied, the azimuthal modes exhibit the split-
tings shown in Figs. 1(b) and 1(c). Figure 2 displays
the magnetic field dependence of the lowest fifteen
modes for a sample of density no=7. 2X 10 cm and
the experimental data are compared to the calculated
values for the modes (0,1), (+ 1, 1), ( + 1, 2) (solid
lines). In higher field we distinguish between two
types of modes: (i) the modes whose frequency is
higher than co, and combines nearly quadratically with
co, as expected for cycloplasmons in an infinite
geometry; (ii) the modes ( —v, 1) whose frequency
drops below co„a novel feature which is the signature
of a wave that propagates on the plasma perimeter.
The amplitude of these modes decreases with decreas-
ing field which indicates that fewer and fewer electrons
participate in the motion as the wave becomes local-
ized at the sample edge within a strip of width —1/H.
The asymptotic frequencies are expected to be vc~/R'
in the idealized case (step density profile and screened
interaction), but the experimental agreement is less
good (c~/R'=21. 6 MHz for np= 7.2X10 cm ). In
this picture, the wave is localized in a strip cv/pp, which
is of the same order as the characteristic decay length
of the density and the dynamical screening length
D/7r In this cas. e, formula (4) is no longer valid and
we can expect a behavior of the frequency in high
magnetic field similar to the unscreened case (i.e. ,
co —I/cu„ see Ref. 4).

Correlational effects seem to be unimportant: For
all the samples studied, we were able to work at tem-
peratures above and below the melting of the electron
solid at T= T . When the temperature was swept
through T, we oberved the appearance of the
electron-ripplon coupled modes but the feature re-
lated to Hall charge accumulation remained. To incor-
porate the transverse excitations ~, = (cpkz+cupz)' z

into our results, where e, denotes the transverse veloc-
ity, we must divide the factor vcr, /pp in Eq. (4) (in the
limit D/7rR 0) by 1 —pp, /co and the new dispersion
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relation becomes (co2 —coo2 —cv2k2) (co2 —co,2) = co2co,2,

where coo denotes the local mode frequency in the
electron dimple.

The new features of the spectrum in a magnetic field
are not peculiar to the circular geometry and in partic-
ular the new one-dimensional perimeter wave is ex-
pected to exist in other two-dimensional systems and
might well be used as a local probe. For example, it
could be put to use to study the decay of correlations
in the crystalline phase due to the diminishing density
towards the edge of the sample. We speculate that the
dynamical Hall effect can also be employed to study
the quantized Hall effect: We expect that plasmon
waves can propagate when the Fermi level lies in the
extended states region. The plasmon-wave frequency

co~(k) is —(nf)'l where nf is the density of delocal-
ized states [with co~ && cu, and k && (eH/ch)'/ ].
With a suitable metallic screening, a wave in high mag-
netic field could be localized near the edge of the sam-
ple in a strip ~1 p, m and might give information
about the spatial distribution of the extended states.

During the course of this work, another group re-
ported the observation of new, as then unexplained,
magnetoplasmon modes in a rectangular geometry at
high density. We think that the dynamical Hall effect
is also responsible for these modes but the appearance
of a large local mode frequency in the solid phase and
the rectangular geometry make the analysis more diffi-
cult. "
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