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Observation of Bulk and Edge Magnetoplasmons in a Two-Dimensional Electron Fluid

D. B. Mast
Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221

and

A.J. Dahm
Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106

and

A. L. Fetter
Institute of Theoretical Physics, Department of Physics, Stanford University, Stanford, California 94305
(Received 8 January 1985)

Two-dimensional magnetoplasmons are studied in a classical gas of electrons bound to a liquid-
helium surface. A new and unpredicted resonant mode has been observed. The density and mag-
netic field dependences of this new mode differ strikingly from normal magnetoplasmons. These
new resonant modes are interpreted as edge magnetoplasmons of the two-dimensional charge

sheet.

PACS numbers: 73.20.Cw, 52.35.—g, 71.45.Gm

Two-dimensional (2D) electron systems have been
of wide experimental and theoretical interest for
several years. Theoretically, the reduced degrees of
freedom allow detailed and often exact calculations.
Experimentally, new, unexpected phenomena have
been observed. While 2D systems display analogs of
characteristics of 3D systems, the lower dimensionality
often modifies their properties dramatically. Plasmons
of a classical 2D electron gas are a case in point.

We report an experimental and theoretical investiga-
tion of plasmon resonances in a classical 2D Coulomb
gas of electrons, trapped in surface states above a
liquid-helium surface, when a magnetic field is applied
perpendicular to the charge layer. We observe two sets
of resonant absorption spectra. One set is the normal
plasmon-cyclotron coupled modes. An additional set
of resonant spectra has mode frequencies that decrease
dramatically with increasing magnetic field. We identi-
fy these latter resonances as edge plasmons of the 2D
charge sheet—the 2D analog of surface plasmons in
3D systems. To our knowledge these are the first edge
modes observed in a 2D system.

The plasmons of a 2D electron sheet were first ob-
served by Grimes and Adams.! They confirmed the
2D plasmon dispersion relation in zero field?:

w}=4mne’k/mlecoth(kh) +coth(ks)].

Here e and m are the electronic charge and mass, 7 is
the electron areal density, k is the wave vector, € is the
dielectric constant of liquid helium, and /4 and s are,
respectively, the separation of the electrons from
grounded planes below and above the sample. If a
magnetic field is applied perpendicular to an unbound-
ed electron sheet, the plasmon frequency is predicted
to shift to® o = (w2 + w2) V2, where w, = eB/mc.

We study plasmons in an applied magnetic field with
an experimental cell and procedures similar to those of
Grimes and Adams.! Our 2D electron sample is con-
fined between the plates of a rectangular cross-section,
parallel-plate capacitor semi-immersed in liquid heli-
um.* The sample density is fixed by the potential
difference between the top and bottom plates. Each
capacitor plate has dimensions (W —1.78 cm)
x (L =2.5 cm) and is divided into three equal-area
electrodes. Our procedure for observing these
resonant modes involves exciting standing-wave reso-
nances in the electron sheet, and recording the power
absorbed by the electrons as a function of the excita-
tion frequency. These standing waves are generated
by application of a small ac voltage to the top center
electrode, which produces a small ac change in the
electron areal density under this electrode. The boun-
dary conditions select wave vectors, k,=mm/ W and
k,= nw/L m#= 31, where m, n, and /are even integers.

Typical traces of the rf absorption are shown in Fig.
1. The upper trace shows the normal plasmon reso-
nances in zero magnetic field. The arrows are the cal-
culated zero-field plasmon frequencies labeled with
mode integers m and n. The lower trace is typical of
the new resonances that we have observed. These
modes have been observed in the temperature range
from T =0.90 K, where vapor-atom scattering broad-
ens the resonances, down to the melting temperature
of the 2D Wigner cyrstal. We have not fully investi-
gated whether these modes can propagate in the solid
phase. For densities = 2x 108 cm~2 the amplitudes of
the new peaks decrease rapidly as the solid phase be-
gins to form. This decrease may result from additional
damping in the solid phase.

A plot of experimental standing-wave resonance fre-
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FIG. 1. Experimental traces of the second derivative with
respect to density of the rf absorption plotted vs frequency.
The upper trace shows the normal plasmon standing-wave
resonances in zero magnetic field, n=1x108 cm~2. The
lower trace shows the resonant peaks of the new absorption
mode in a magnetic field of 765 G; n =3x103cm~2.

quencies as a function of applied field is shown in Fig.
2. The various curves are associated with different
wave vectors. Data were taken at different densities in
different magnetic field regimes as indicated in the fig-
ure caption. The zero of the magnetic field is uncer-
tain to 10 G as a result of trapped flux near our
sample.

We associate the resonances which shift to higher
frequencies with increasing magnetic field with the
normal 2D plasmons. In Fig. 3 we plot the squares of
the angular frequencies of the normal plasmon modes
versus w? for a different sample. The curves are la-
beled with the mode integers (m,n). The lowest curve
represents an overlap of the (2,4) and (4,0) reso-
nances and the identification of another curve is un-
certain. For w, > 1.5%10% sec™! the line shapes were
distorted. This distortion and the deviation from the
theoretical curves in Fig. 2 may be due to an overlap
with other resonances as the lines broadened with in-
creasing field.

The dominant feature in Fig. 2 is a new branch of
the magnetoplasmon dispersion relation which is not
present in an infinite 2D electron sheet. For a fixed
wave vector, the standing wave frequencies vary as
B~! for large magnetic fields and, in the limit of zero
field, extrapolate to a value below the corresponding
plasma resonances of the upper branch. The ampli-
tudes of the new-mode absorption spectra are smaller
than the upper-branch peaks by a factor of approxi-
mately 5. These amplitudes decrease linearly with in-
creasing temperature. In fields of order 700 G the
quality factor of these modes is = 3 and the linewidths
are an order of magnitude smaller than the linewidths
of the normal plasmons in zero field. In large magnet-
ic fields the frequencies of these modes are linear in
density.> The measurements reported here were taken
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FIG. 2. Plot of standing-wave frequencies vs applied mag-
netic field. The inset shows two branches of the spectrum at
small fields. The symbols are as follows: squares,
n=28x10% cm~2% circles, n=2x10% cm~2 lozenges,
n=12x10% cm~2 The curves are theoretical fits to the
data. There are no adjustable parameters for the normal
magnetoplasmon modes labeled with mode integers (m,n).

1

at the saturated density, ny=F,/2me. The holding
field, E,, is not expected to have any additional influ-
ence on the frequency.

Our theoretical picture of these phenomena relies on
the hydrodynamic model of a charged compressible
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FIG. 3. Square of the upper-branch angular frequency vs
w? for four wave vectors; n=1.1x 108 cm~2. The lines are
drawn with a slope of unity.
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fluid placed in a uniform neutralizing background.®
This model includes dispersion, which arises from the
compressibility, and screening, but it omits retarda-
tion. In three dimensions, it allows an exact solution
for bulk magnetoplasmons with general wave number.
It also describes surface magnetoplasmons bound to a
3D half-space; if the field is parallel to the surface and
the surface wave propagates perpendicular to the field,
the long-wavelength dispersion relation’ is given by
the roots of the equation 2w? +2ww, — Q2 =0, where
Q,— (4me?n/m)V? is the bulk 3D plasma frequency
and the plus/minus sign reflects the two different
directions of propagation relative to the field. Since
the product of the roots is independent of w., whereas
the sum is proportional to w., one root behaves like
wg ! for we/Qp>> 1.

Although the preceding analysis suggests 2D
‘“‘edge’ magnetoplasmons as the explanation of the
lower modes seen in Fig. 2, the greatly reduced
screening in 2D requires a separate and more intricate
analysis. We again use the hydrodynamic model
without retardation. With a magnetic field Bz perpen-
dicular to an unbounded layer, the dynamical equa-
tions for the electron fluid (conservation of matter and
momentum) are essentially those for the 3D case. In
contrast, Poisson’s equation V2®=4men’8(z) must
be solved for the potential ® arising from the density
perturbation »’ in the layer. A straightforward analysis
for a plane wave reproduces the long-wavelength
result noted previously; in particular, the frequency of
all bulk 2D magnetoplasmons increases with increasing
applied field.

We next consider a half-sheet for x < 0, with a wave
« e™ propagating along the boundary. The right-hand
side of Poisson’s equation now vanishes for x > 0; a
Fourier transform in x then yields an integral relation
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FIG. 4. The quantity (|lo_|+2"2w./3)? vs w?2 for

n=1.2x10% cm~? and small magnetic fields. The two
curves represent different wave vectors.
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®(xz=0)=—4me[" dx'L(x—x)n'(x') between
the potential ® in the °ﬁ'lane of the layer and the densi-
ty perturbation. Here, L(x)=Q2#w) 'Kq(k|x]) is
the inverse transform of +(k?+ k'2)~ Y2, In principle,
when combined with the dynamical equations for the
fluid, this problem can be solved with Wiener-Hopf
techniques®; unfortunately, the details become cum-
bersome, and we instead replace L by an approximate
kernel 2~ ¥2exp(—2Y2k|x|), with equal area and
second moment.® The resulting approximate model
can now be solved exactly. Imposing the conditions
that the velocity v, vanish at x =0, and that ® and its
gradient be continuous there, we eventually obtain the
equation 3w? +2¥2ww, — 2w} =0 for the dispersion re-
lation of long-wavelength edge magnetoplasmons
bound to the half-layer. Here w, is the 2D plasma fre-
quency for wave number k in zero field, and the
plus/minus sign again arises from the two field direc-
tions relative to y. Apart from the altered numerical
constants and the appearance of the appropriate 2D
plasma frequency, this equation is very similar to that
for 3D surface magnetoplasmons.” In particular, one
root,

lo_1=QY¥3)[Bw2+ ) -], (1

has all the features seen in Fig. 2, and we therefore
tentatively identify the lower mode as an edge magne-
toplasmon of the 2D charge sheet.

In Figs. 4 and 5, we compare our data with the pre-
dictions for w_ given by Eq. (1). The two lower
curves shown in the inset in Fig. 2 are plotted in Fig. 4
as (lo_|+2Y2./3)? vs 2. The least-squares—fitted
slopes are 0.227 +0.006, where the errors include an
uncertainty in the zero of field. The solid line
represents the theoretical value of .

We analyze the intermediate-field data by writing
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FIG. 5. The intermediate-field data for w_ plotted as
(wp/w)? vs w./w. The density is 2.8 x 108 cm~2. Different
symbols represent different wave vectors.
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the dispersion relation as (w,/w_)*—b(w./|lw_1)
—a =0 and allow a and b to be adjustable parameters.
Figure 5 is a graph of (w,/w_)? vs w./w_ for the
intermediate-field resonant modes shown in Fig. 2.
The values of w, associated with these modes is uncer-
tain and was used as an adjustable parameter. Both the
intermediate- and high-field data (Fig. 2) are in excel-
lent qualitative agreement with the theory, which it
must be remembered involves one basic approxima-
tion. The intercept a is uncertain because of the sensi-
tivity to the determination of zero field ( £10 G). If
we assign the mode numbers (2,0) to the lowest-
frequency edge modes, we obtain a — =1.1and b =1
from Fig. 4 and b=2 from Fig. 5; an obvious
discrepancy for the parameter 5. However, these nu-
merical values are very uncertain since it is difficult to
assign wave vectors, and thus to determine values of
w,, for the edge modes. The approximate theoretical
values are a = 1.5 and b=2Y2

The theory of edge magnetoplasmons gives excel-
lent qualitative agreement with the experimental data.
The theory predicts that the penetration depth from
the edge of the sample for this excitation is = kL.
For the lowest mode excited on opposite sides of the
sample, a fraction 2/k,L = W/mw L =0.22 of the elec-
trons are involved in the excitation. This is consistent
with a signal amplitude which is approximately 20% of
the amplitude of the normal-plasmon signals. The
narrow linewidth of these resonances relative to the
normal plasmons raises an interesting theoretical ques-
tion which we have not yet investigated.

It is unlikely that we have observed the upper, o,
edge magnetoplasmon branch which is drawn as
dashed curves in the inset of Fig. 2. At small fields a
number of edge modes at differing wave vectors have
absorption peaks that overlap other normal-mode
peaks, and it is difficult to resolve the absorption spec-
tra. It is possible that the other edge branch is not dis-
cernible for the same reason.

In conclusion, we have investigated the dispersion
of 2D plasmons in an applied magnetic field. For the
normal plasmon resonances, we find reasonable agree-
ment between theory and experiment. In addition, we
have observed a new resonant mode in the 2D elec-
tron gas. We solved for the collective modes of a 2D
plasma in a half-plane placed in a magnetic field and

obtained the dispersion relation for a new set of pro-
pagating modes, which we call 2D edge magneto-
plasmons. These calculations are in qualitative agree-
ment with the experimental data.

After this work was submitted, we received a pre-
print from D. C. Glattli, E. Y. Andrei, G. Deville, J.
Poitrenaud, and F. 1. B. Williams which reports an in-
vestigation of magnetoplasmons in a similar system.

We wish to thank H. W. Jiang and M. A. Stan for
their help with the data reduction. Stimulating conver-
sations with J. D. Maynard, J. A. Northby, and R. G.
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