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Effects of Thermal Fluctuations on Systems with Small Surface Tension
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We consider the influence of thermal fluctuations on systems with negligible surface tension
("membranes"), whose behavior is determined by curvature effects. Fluctuations change the ef-
fective rigidity and other relevant parameters. Two-dimensional membranes appear rigid at short
distances and crumpled at long distances. For more than two-dimensional membranes (or in pres-
ence of long-range forces) a crumpling transition separates a rigid low-temperature phase from a
crumpled high-temperature one.
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Several interesting systems may be described as in-
terfaces with small or even vanishing surface tension.
This is the case of certain closed lipidic membranes
and of bicontinuous microemulsions. Closed lipidic
bilayers, such as red blood cells or artificial liposomes,
can have an unswollen shape. They then minimize at
equilibrium their free energy with respect to both
volume and surface independently, ' yielding a vanish-

ing surface tension. As shown by Helfrich and co-
workers, ~ the size and shape of the vesicles is then
determined solely by the curvature free energy, which
is in turn a function of only one relevant elastic
modulus, called the rigidity K. Vanishing surface ten-
sion entails the flicker phenomenon, namely the
enhancement of shape fluctuations of vesicles, investi-
gated a few years ago by Brochard and Lennon, 3 and
by other theoretical' and experimental groups. In mi-
croemulsions, the introduction of a surfactant reduces
the surface tension of oil-water interfaces to very small
values. 5 The structure of the interface is then
governed by curvature effects. De Gennes and Tau-
pin6 have investigated the role of K in microemulsions
and introduced the notion of the persistence length (,
such that the interface appears rigid at scales smaller
than g, but flexible and crumpled (losing its orienta-
tional coherence) at distances longer than g. This
length is of the order of a typical "droplet" size in the
microemulsion. Helfrich and Servuss7 have pointed
out that rigidity also controls the reduction in base
(projected) area of an interface (a membrane) with
respect to its true area, due to thermal fluctuations.
From now on we shall call "membranes" all physical
systems with small or vanishing surface tension.

Helfrichs has recently suggested that fluctuations
should also reduce the "effective" rigidity of a macro-
scopic membrane with respect to its "bare" or micro-
scopic value. We have checked this suggestion within

a systematic theoretical approach, computing to one-
loop order the renormalization-group equations which .

describe the renormalization of the rigidity ~, as well
as of the surface tension r, the true area S, and the
spontaneous curvature H'. The results confirm the
main qualitative predictions of Helfrich, s and allow us
to give a sound definition of the persistence length g
and to compute its scaling behavior as a function of K.
They also show that for membranes whose dimen-
sionality d exceeds two, one should observe a "crum-
pling" transition between a low-temperature phase,
where the membrane is rigid and flat, and a high-
temperature phase, where the effective rigidity de-
creases with increasing membrane size and the surface
appears crumpled. This transition might be observable
in real, two-dimensional systems in the presence of
long-range forces. We give here a short account of the
results. Full calculations will be reported elsewhere.

We start from the usual expression of the curvature
elastic free energy density ~ per unit area of a fluid
membrane'P:

&~= rp+ —,
' ~p(H H(~) ) +apK. —

Here His the mean curvature of the membrane, i.e.,
the sum of its inverse curvature radii, whereas IC is its
Gaussian curvature, i.e. , the corresponding product. It
is well known' that the last term need not be taken
into account if one only considers fluctuations of the
membrane shape which do not change its topology.
The coefficient Kp is the bare rigidity, and Hp is the
bare spontaneous curvature. The bare surface tension
is r p. We are considering systems whose effectiue
(macroscopic) surface tension r is negligible. If I' is
the total free energy and S is the membrane area, we
have

r = [tiFjr)S],q
=0.
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This does not necessarily imply r p
=0, since thermal

fluctuations renormalize the surface tension from its
bare value to its effective value r." Neglecting asym-
metry effects for the moment (and therefore setting
Hp =0), we allow for the possibility of large devia-
tions of the membrane shape from planar, always as-
suming large values of the curvature radii, and thus al-
ways keeping within the range of validity of Eq. (1).
We have, therefore, for any configuration S of the
membrane,

F[S]= Jt dS(r + ,' K H2)—, (3)

and the probability of any configuration is proportional

!
to the Boltzmann factor exp( —F[S]/T). The integral

runs over the whole area of the membrane and dSis its
area element. We parametrize membrane shapes by
giving the value of the coordinate zas a function of the
coordinates x and y.

S: z = u(x,y), (x,y) e Sp, (4)
where Sp is the base (the projection of S on the z =0
plane). In terms of the vector field qh=gradu, one
then has'

dS=(1+@')' 'dx dy,

H =div[qb(1+@ ) ' ]

Substituting these expressions into (3) and expanding
in powers of $, one sets up a loop expansion for quan-
tities such as the effective potential I [ U]:

fO

I [U] = dx dy ) (xy) U(xy) —ln & uexp —F[u]/T+ J dx dy X(xy) u(xy),

(9)P [dK/dP ]p = K( 6 +3T/2K),

where 7. =2T(4n) dt2/I'(d/2) If we take .p,
2 to be

proportional to the membrane base area Sp, we obtain
from Eqs. (8) and (9) the increase of the effective sur-
face tension and the variation of the effective rigidity

which generates the vertex functions as derivatives
with respect to U(xy) = (u(xy) ). Invariance of the
free energy (3) with respect to translations parallel to
the z axis as well as to rotations around an axis lying in
the z =0 plane imply that for an almost planar mem-
brane I'[ U] should have the same functional depen-
dence on U as Fhas on u, possibly with different coef-
ficients. '3 It is, in fact, sufficient to calculate the two-
point vertex function I ~

In the perturbative calculations the quantity T/K
plays the role of the expansion parameter. Its experi-
mentally measured value appears to be rather
small. 3'4 One faces, however, divergences which
should be regularized by introducing an infrared cutoff
in wave number proportional to the inverse base size
and an ultraviolet one proportional to some inverse
microscopic length. It is in fact more convenient to
exploit r as an infrared cutoff and to dispose of the
ultraviolet one by dimensional regularization. '~ One
generalizes the model to 3 —e space dimensions and
performs all integrals over the 2 —e transverse dimen-
sions. Poles in e appear, reminiscent of the diver-
gences at d =2, which are removed by minimal sub-
traction. " One thus obtains a renormalized surface
tension r and a renormalized rigidity, which one
expresses as Kp, ', thereby introducing a renormaliza-
tion wave number p, . The renormalization-group
equations are obtained by expressing the variation of
the renormalized parameters r, K, for a varying p, at
fixed values of the bare Parameters rp, Kp. They are
given by

p, [dr/d p] p
= —r X3 r/2 K, (8)

with increasing membrane size. For the physical case
e=0 the effective rigidity decreases with increasing
membrane size, in a way which agrees qualitatively
with that suggested by Helfrich, 8 although with slightly
different coefficients. It is indeed easier to bend a
membrane which already contains some ripples. If one
defines a wave-number-dependent rigidity K(q), one
likewise obtains, in the limit of large rigidity
(~/K «1),

K( g) = Kp + (3 T/O'Ir) ln( qa ), (10)

where a is some microscopic length. This reduction of
K with increasing observation scale qualitatively agrees
with the discrepancy among values of K obtained by
different experimental techniques. '4 '6

If the effective surface tension r vanishes, Eq. (9)
implies, for e & 0 (ambient space with more than three
dimensions), a transition between a low-temperature
phase with infinite effective rigidity for infinitely large
membranes ("rigid") and a high-temperature phase
where rigidity decreases with increasing membrane
size ("crumpled" ), separated by a critical point where
i/K = —2e/3, corresponding to an unstable fixed point
of the flow equations. We call this transition the
"crumpling" transition. " In the low-temperature
phase, Euclidean symmetry is spontaneously broken.
For two-dimensional membranes one is always in the
high-temperature phase, and orientational correlations
decay exponentially over a length scale g which may be
identified with the persistence length of de Gennes
and Taupin. Its scaling behavior at low temperature T
(high rigidity Kp) may be obtained by integrating Eq.
(9) and is given by

g = a exp (4n Kp/3 T) .

One may also calculate the increase in effective mem-
brane area Swith increasing base area Sp. Introducing
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the fractal dimension D of the membrane via the rela-
tion Sca SoD, one obtains

D dlnS I 1 dlnS
2 dlnSo 2 dlnp,

=1+
4K

(12)

Equation (9) implies that the membrane becomes
more and more flexible as its size increases, whereas
Eq. (12) shows that it becomes at the same time more
and more corrugated. One can also show that for
asymmetric membranes the spontaneous curvature H'
increases with increasing size. This may have observ-
able effects on the dependence of liposome shapes on
their size.

We have thus defined a theoretical model of an in-
terface with negligible surface tension (a membrane),
representing systems such as certain liposomes and in-
terfaces in microemulsions. A renormalized pertur-
bation-theoretical treatment of this model leads to the
conclusion that thermal fluctuations change not only
the surface tension, but also the effective rigidity and
the spontaneous curvature, which were so far con-
sidered as constants. For a two-dimensional mem-
brane, this implies that for a sufficiently large base
area, the surface becomes so corrugated that it tends to
fill up the whole space. It would be tempting to relate
this behavior with the physical phenomenon of the
creation of microemulsions. One should nevertheless
keep in mind that our calculations cannot be extrapo-
lated to situations in which different parts of the sur-
face come in contact with one another. We expect that
microscopic, molecular details become important in
this situation. One should also consider fluctuations
which change the topology of the surface and therefore
take into account the Gaussian curvature term.

Within its range of validity, our theory predicts that
orientational correlations decay exponentially at any
temperature T )0, with a well-defined correlation
length g. Membranes appear as rigid at scales smaller
than (, and flexible and crumpled at scales larger than

For hypothetical systems of dimensionality larger
than two (or in presence of long-range forces), we
predict a crumpling transition between a low-tem-
perature phase, where the membrane is rigid, and a
high-temperature one, where it is crumpled. It would
be extremely interesting if this transition could be re-
lated to the recently observed change between a stiff
and a flexible state in some lyotropic systems. '8 The
analysis of the dependence of the effective rigidity on
wave number and the search for this transition appear
as the most exciting directions for further study.
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