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The cubic direct-interaction approximation is applied to the truncated cubically nonlinear
Schrédinger equation. The statistical theory does a satisfactory job in several important respects.

PACS numbers: 52.35.Ra, 05.90.+m, 52.35.Mw

An important mode of Langmuir turbulence in plas-
ma physics,!"® as well as deep-water waves in fluid
dynamics,” is the cubically nonlinear Schrédinger
equation

i9,E(x,0) +92E +|E|’E — WE =0, 1

where E(x,t) is the dimensionless, slowly varying (in
time) amplitude of the rapidly varying (near the elec-
tron plasma frequency) Langmuir-wave electric field, ¢
is time, x is distance, and W is the spatial average of
|E|2. This equation is, in fact, a generic nonlinear
equation which can arise whenever the envelope of a
wave train is perturbed.® Thus, it is important to seek
statistical theories for this equation which rival in accu-

turbulence theory of plasma physics does not work at
all in this one-dimensional case, predicting no evolu-
tion of any initial wave spectrum.!® Other statistical
approaches to strong Langmuir turbulence have been
reviewed recently.®

In this paper we apply the cubic version!!'-!7 of
Kraichnan’s direct-interaction approximation® !8-20 to
a truncated version of (1). That is, we take the elec-
tric field to be periodic on 0 <x <<2= so

E(x,0 = 2, Ex(Dexplikx). )

Then the spatial Fourier transform of (1) is obtained
from Hamilton’s equation

racy and completeness the statistical theories of fluid i8,E,=9dH/dE} 3)
turbulence.” Unfortunately, the standard weak- . o
— 1 with the Hamiltonian
2
H= ZlEk|2+% ElEkl2 —_—;_ E EkEkrE’:/lE:u/. (4)
k k k+k/=k/r+k///

We truncate the system of Eq. (3) so that only modes
from — k. 10 + kmay are treated, and all summations
in (4) and in the remainder of the paper go from
— Kmax t0 +kmax. In addition to Hand W =3,|E|?,
a third constant of the motion is the ‘‘momentum”’

P =2, klE/ (5)

I the set of two-point correlation functions

The cubic direct-interaction approximation involves |

Ck( L) = <Ek( ) E/:( t) >,

where angular brackets denote an ensemble average,
and the set of response functions Ry(1t’) which give
the ensemble-averaged change in E(#) due to infini-
tesimal change in E;(¢') at an earlier time ¢, divided
by the infinitesimal change; Ri(t#) =1 and R, (t¢)
=0 if t < t’. The statistical theory in this case has the
form, ' for each k,

0,Ci(8t) = —ik?Ci (,t)+il (W) —Ck(t,t)]Ck(t,t')'*"l;(: Sk(t,t”)Rk*(t’,t”)dt"+j;(:Zk(t,t")Ck(t”,t’)dt” (6)

and
t

R (1,t) = —ik?Ri(1,t) +il (W) —C () IR (1,1') + ft,Zk( L) R (', dr”, @)
where the ‘‘nonlinear noise source’’ is

Sc(60) =GP C=3C 2N C 1P +2 3 CCnC™ i (8)

K’ k'k"

and the ‘‘self-energy’’ is

Zy(41") = —2R| G l> + R C2 +3R, 2 C, 12 +3C, 2R,.C}, —3C 2R,C,.

k' k'’ k'
—4 3 R.CiC* v sy 2 2RECCy o o ©)
klkll k!kll
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all time arguments on the right-hand sides of (8) and
(9) are the same as those on the left, and all summa-
tions include only those subscripts in the range — kpax
to +kmax. It has been assumed that the initial-value
ensemble has (Ey) = (ExE,,) =0 for all &, k', and that
it is Gaussian. It is shown in Sun, Nicholson, and
Rose?! and Sun?? where further details of this work
can be found, that the statistical theory conserves
(W), (P),and (H).

There exists a class of stationary solutions to (6) and
(7) in which C,(£¢') =Ci(t—1¢') and Ry (1,t') =R, (¢
—¢') for all k; in general, these require fy— — co.
These ‘‘thermal equilibrium”’ solutions correspond to
an ensemble in which the one-time probability distri-
bution function is given by

P({E}) =Kexp(—aW —BH —yP), (10)

where K is a normalization constant; this distribution
is normalizable only for finite k.., and for certain
ranges of the real temperatures «, B, and y. A
straightforward extension of the calculation of Deker
and Haake??2* leads to the ‘“‘fluctuation-dissipation”’
theorem

R (t—1t)=(iBd,+a+yk)C(t—1) 11)
for ¢t > ¢, and a corresponding relation between the
nonlinear noise source and the self-energy,

Z(t—t)=—(iBd, +a+Bk)S(t—1t) (12)
for t > ¢'. By using (11) and (12) in the statistical
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FIG. 1. Numerical solution of the statistical theory (6)
and (7) compared to an ensemble of numerical solutions of
(3) in the five-mode (km.x=2) case, with initial conditions
Cy(0,0)=C;(0,0)=C,(0,0)=1. (a) Two-time correla-
tion function |Co(0,¢)|. (b) |C1(0,¢)1. (c) |C,(0,£)].

theory (6) at #'=1t, one obtains the consistency relation
1—(a+vk)C(0)

which is valid for each k. The significance of this dis-
cussion is that, for arbitrary initial values {Ci(#o,29)},
our numerical solutions of the statistical theory (6)
and (7) evolve to one of the stationary solutions
represented by (10), and the stationary values {C,(0))}
are predicted by (13) plus the conservation laws.

Let us now present the results of our numerical
solution of the statistical theory (6) and (7). In Fig. 1
the numerical solutions of (6) and (7) for
Ce(t=0,t"), k=0, 1, 2, are compared to the corre-
sponding averages for an initially Gaussian ensemble
of 10000 numerical solutions of the dynamical equa-
tion (3) in the five-mode (k. =2) case, with the ini-
tial conditions Cy(0,0) =C;(0,0) =C,(0,0) =1. (In
all calculations in this paper, C_; = C; for all k and at
all times.) The error bars in Fig. 1(a) represent the
standard error for the quantity |E,(0)EJ (¢')|. Fig-
ures 1(a) and 1(b) show that the theory does a re-
markably good job of predicting |Cy(0,¢)| and
|C,(0,¢)] in the case, especially for 0 <7 <1. The
agreement for |C,(0,7)| in Fig. 1(c) is not as good,
but is still qualitatively quite satisfactory for statistical
theories of this type. This example, both analytically
through (10)-(13) and numerically, corresponds to a
stationary state in which Ci(t,t') =C(t—1¢) for ¢
t' >0, k=0, 1, 2, which we call an equipartition state.
The appropriate temperatures are a=1, 3=0, y=0.

In Fig. 2 the equal-time functions Cy(#0 and
C, (1,0 obtained from the statistical theory (6) and (7)
are compared to an ensemble of numerical solutions of
the dynamical equation (3), for the three-mode
(kmax=1) case with initial conditions Cy(0,0) =10,
C,(0,0) =1. Both the ensemble and the statistical
theory reach an approximate stationary state after a

\
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FIG. 2. Single-time correlation functions Cy(t1) and
C,(t1) from the numerical solution of the statistical theory
(6) and (7) compared to those of an ensemble of numerical
solutions of (3) in the three-mode (kn.x=1) case, with ini-
tial conditions Cy(0,0) =10, C,(0,0) =1.
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time of order 0.5. The stationary values are not in
very good agreement: the ensemble has

lim Cy(t,8) >> lim C(¢9)

t— oo = oo
(this result is easily understood?!-?? on the basis of the
standard integrable three-mode problem?>~?" well
known in plasma physics) while the statistical theory
reaches a state which is almost but not quite in
equipartition,

lim Cy(z,0) = lim C(£9.
t = oo t— oo

The statistical theory does a better job in Fig. 3
under the same conditions as in Fig. 2 but with the
initial conditions C(0,0) =0.1941 and C,(0,0)
=0.4659. The statistical theory and the numerical en-
semble both appear to evolve to stationary states which
are not too different from each other. By considering
(W) and (H) in the initial Gaussian state, and in the
final thermal equilibrium state [(P)=0 and y=0
throughout this paper since C _;(#¢') = C,(1,¢') for all
k], and by writing (13) for k=0 and k =1, one ob-
tains high-order algebraic equations relating the initial
conditions Cy(0,0) and C,(0,0) to the final stationary
values Cy=Cy(0) and C;=C;(0) and the tempera-
tures « and B. In the present case, the initial values
chosen correspond to the predicted final values
a=2874, B=—1, Cy=0.2941, C,=0.4159, which
indeed correspond to Fig. 3 to within numerical accu-
racy.

It is possible to compare the properties of the sta-
tionary solutions of the statistical theory with the cor-
responding exact consequences of the probability dis-
tribution (10). In the three-mode (k. =1) case we
write the partition function (y=0)

Z = [dEydE, dE _ exp( —a W — BH), (14)

where dE, represents a two-dimensional integration
over real and imaginary parts, dEy = dE,,dE;, and all
integrations go from —oo to +oo. In terms of the par-
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FIG. 3. Same as Fig. 2 with initial conditions Cy(0,0)

=0.1941, C,(0,0) =0.4659.
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tition function,
(H)=—291InZ/3B. 15)

Four of the six integrations in (14) can be done analyt-
ically?®; performing the remaining two numerically we
obtain (H) vs B at fixed a. For a =6, this curve is
labeled ““EXACT” in Fig. 4. It is compared in that
figure to the corresponding curve, labeled ‘‘CDIA,”’
obtained as in the discussion of Fig. 3. For complete-
ness, we also display the predictions of two simpler
theories. The ‘“HARTREE” approximation is the
same as the cubic direct-interaction approximation ex-
cept that S,(0) in (13) is set equal to zero for all k.
The “WEAK TURBULENCE” approximation is ob-
tained by ignoring all terms higher than quadratic in
the Hamiltonian (4); (15) then yields (H)=2/(a
+8) as shown in Fig. 4.

Note that the comparisons in Fig. 4 are only among
the probability distribution (10) and the stationary
solutions of the statistical theories; in the three-mode
case the actual numerical ensemble involves inte-
grable, periodic motion in each realization and there is
no reason to expect that an initial Gaussian ensemble
will evolve to a thermal equilibrium state characterized
by a probability distribution of the form (10).

We have also made an extensive investigation of the
case where the Hamiltonian equations (3) are supple-
mented with linear damping and driving terms. The
dynamics of this case have been treated elsewhere?2¢
in detail. We find that the statistical theory also yields

WEAK
/TURBULENCE

(H>

1 | 1 | | l l ! J
-8 -6 -4 -2 -0 -8 -6 -4 -2 00

B
FIG. 4. Comparison of the ‘‘exact’® numerical evaluation

of (14) and (15) with the corresponding predictions of three
statistical theories for a =67.
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reasonable results in this case, evolving to a stationary
state for a broad range of driving and damping; we dis-
cuss the detailed interpretation of these results else-
where.2!-22

We conclude that the cubic direct-interaction ap-
proximation yields satisfactory qualitative, and in
many cases quantitative, results when applied to the
cubically nonlinear Schrédinger equation truncated to
a few modes. There is some indication that the results
improve with more modes. It remains for future work
to determine whether present computational resources
are capable of solving the theory when the number of
modes is large enough (50 or 100) to reproduce the
partial differential Eq. (1) in physically interesting
cases.
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