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Statistical Theory of Cubic Langmuir Turbulence
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The cubic direct-interaction approximation is applied to the truncated cubically nonlinear
Schrodinger equation. The statistical theory does a satisfactory job in several important respects.
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An important mode of Langmuir turbulence in plas-
ma physics, ' as well as deep-water waves in fluid
dynamics, is the cubically nonlinear Schrodinger
equation

t B,E(x, t) + d„E + I E I'E —WE =0, (1)
where E(x, t) is the dimensionless, slowly varying (in
time) amplitude of the rapidly varying (near the elec-
tron plasma frequency) Langmuir-wave electric field, t
is time, x is distance, and Wis the spatial average of
I E I . This equation is, in fact, a generic nonlinear
equation which can arise whenever the envelope of a
wave train is perturbed. 8 Thus, it is important to seek
statistical theories for this equation which rival in accu-
racy and completeness the statistical theories of fluid
turbulence. 9 Unfortunately, the standard weak-

«rbuience theory of plasma physics does not work at
all in this one-dimensional case, predicting no evolu-
tion of any initial wave spectrum. ' Other statistical
approaches to strong Langmuir turbulence have been
reviewed recently.

In this paper we apply the cubic version" ' of
Kraichnan's direct-interaction approximation ' to
a truncated version of (1). That is, we take the elec-
tric field to be periodic on 0 ~x ~2m. so

E(x, t) = Q„Ek(t)exp(ikx). (2)

Then the spatial Fourier transform of (1) is obtained
from Hamilton's equation

t a,E„=aHi'aE„'

with the Hamiltonian

H= QIE„I'+ ,
' QIE„I'-

k+k'=k +k
E„E,E„'„E„ (4)

We truncate the system of Eq. (3) so that only modes f

from —k „to +k „are treated, and all summations
in (4) and in the remainder of the paper go from
—k,„ to +k,„. In addition to Hand W= gklEkl',
a third constant of the motion is the "momentum"

~ = g„k IE„I'.

The cubic direct-interaction approximation involves

B,ck(t, t') = —ik'Ck(t, t')+i [ ( W) —C„(t,t) ] Ck(t, t')+

the set of two-point correlation functions

Ck(t t ) (Ek(t)Ek(t )) ~

where angular brackets denote an ensemble average,
and the set of response functions Rk(t, t') which give
the ensemble-averaged change in Ek(t) due to infini-
tesimal change in Ek(t') at an earlier time t', divided
by the infinitesimal change; Rk(t, t) =1 and Rk(t, t')
=0 if t ( t'. The statistical theory in this case has the
form, ' for each k,

Jl, &k(t, t")R„(t',t")dt"+, Z„(t,t")C„(t",t') dt" (6)
and

BtRk( t t') = —ik Rk( t t') +i [ ( W) —Ck( t t) ]Rk( t t') + ~~,Zk( t t")Rk(t", t') dt",

where the "nonlinear noise source" is

sk(t, t") =Ic„I'c„—3ck+IC„,I'+2 g c„,c„„c„,„,,„„
k'k"

and the "self-energy" is

zk(t, t") = —2RkI ckI +Rtcck +3Rk+~ ck. I +3ck+Rk, ck, —3ck+Rk",c„,
k

k k

k k

k+k'+k" + ~ k'-k" k+k' —k"'
k k"
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all time arguments on the right-hand sides of (8) and
(9) are the same as those on the left, and all summa-
tions include only those subscripts in the range —k
to +k,„. It has been assumed that the initial-value
ensemble has (Ek) = (EkE„,) =0 for all k, k', and that

it is Gaussian. It is shown in Sun, Nicholson, and
Rose2' and Sun22 where further details of this work
can be found, that the statistical theory conserves
( W), (P), and (0).

There exists a class of stationary solutions to (6) and
(7) in which Ck(t, t') = Ck(t —t') and Rk(t, t') =Rk(t
—t') for ail k; in general, these require to
These "thermal equilibrium" solutions correspond to
an ensemble in which the one-time probability distri-
bution function is given by

P( (E„))=~ p( W pH— &P—), - (1o)

Z„(t —t') = —

(ipse,

+n+pk) Sk(t —t') (12)

for t & t'. By using (11) and (12) in the statistical

0.5-

DIA
UMERIGAL
NSEMEILE

0.0 -I I~~+-tW a s~M w I I ~
I I

2

where K is a normalization constant; this distribution
is normalizable only for finite k,„and for certain
ranges of the real temperatures n, p, and y. A
straightforward extension of the calculation of Deker
and Haake23 24 leads to the "fluctuation-dissipation"
theorem

R„(t—t') =(iP 8, +n+yk) C„(t—t') (ll)
for t & t', and a corresponding relation between the
nonlinear noise source and the self-energy,

theory (6) at t' = t, one obtains the consistency relation

1 —( +&k) C„(0)
=p[k2 —( W) +C„(0)—pSk(0) ] Ck(0), (13)

which is valid for each k. The significance of this dis-
cussion is that, for arbitrary initial values ICk(to, to) ),
our numerical solutions of the statistical theory (6)
and (7) evolve to one of the stationary solutions
represented by (10), and the stationary values {Ck(0)I

are predicted by (13) plus the conservation laws.
Let us now present the results of our numerical

solution of the statistical theory (6) and (7). In Fig. 1

the numerical solutions of (6) and (7) for
Ck( t =0, t'), k =0, 1, 2, are compared to the corre-
sponding averages for an initially Gaussian ensemble
of 10000 numerical solutions of the dynamical equa-
tion (3) in the five-mode (k,„=2) case, with the ini-
tial conditions Co(0, 0) = Ct(0, 0) = C2(0, 0) =1. (In
all calculations in this paper, C k = Ck for all k and at
all times. ) The error bars in Fig. 1(a) represent the
standard error for the quantity IEo(0)Eo'(t') I. Fig-
ures 1(a) and 1(b) show that the theory does a re-
markably good job of predicting I C (o0, t') I and
ICt(o, t')

I in the case, especially for 0 ~t™l.The
agreement for I C2(o, t')

I in Fig. 1(c) is not as good,
but is still qualitatively quite satisfactory for statistical
theories of this type. This example, both analytically
through (10)-(13) and numerically, corresponds to a
stationary state in which Ck(t, t') = Ck(t —t') for t,
t' & 0, k =0, 1, 2, which we call an equipartition state.
The appropriate temperatures are a = 1, p =0, y =0.

In Fig. 2 the equal-time functions Co( t, t) and
Ct(t, t) obtained from the statistical theory (6) and (7)
are compared to an ensemble of numerical solutions of
the dynamical equation (3), for the three-mode
(k,„=1) case with initial conditions Co(0, 0) = 10,
C~ (0, 0) = 1. Both the ensemble and the statistical
theory reach an approximate stationary state after a

I.O-

0.5-

C3

0.0
(t, t) —NUME R ICAL E N SE M BL E

I.O-

0.5- (C)

C (t, t) —C DIA

Ci (t.t) —C DI A

C (t, t) - NUMERICAL ENSEMBLE

"0
I 2 3

TIME t

FIG. 1. Numerical solution of the statistical theory (6)
and (7) compared to an ensemble of numerical solutions of
(3) in the five-mode (k,„=2) case, with initial conditions
Co(0, 0) = C, (0, 0) = Cz(0, 0) =1. (a) Two-time correla-
tion function IC, (o, t') I. (b) ICt(0. t') I. (c) IC2(0, t') I.

0
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TIME t

FIG. 2. Single-time correlation functions Co( t, t) and
C~(t, t) from the numerical solution of the statistical theory
(6) and (7) compared to those of an ensemble of numerical
solutions of (3) in the three-mode (k,„=1) case, with ini-
tial conditions Co(0, 0) =10, C)(0, 0) = 1.
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reasonable results in this case, evolving to a stationary
state for a broad range of driving and damping; we dis-
cuss the detailed interpretation of these results else-
where. '

We conclude that the cubic direct-interaction ap-
proximation yields satisfactory qualitative, and in
many cases quantitative, results when applied to the
cubically nonlinear Schrodinger equation truncated to
a few modes. There is some indication that the results
improve with more modes. It remains for future work
to determine whether present computational resources
are capable of solving the theory when the number of
modes is large enough (50 or 100) to reproduce the
partial differential Eq. (1) in physically interesting
cases.
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