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Laser Scattering from Dense Cesium Plasmas

O. L. Landen ' and R. J. &infield
Imperial College, The Blackett Laboratory, London SR'7 2BZ, United Eingdom

(Received 19 October 1984)

The diagnosis of a dense, cold, laser-induced, metal-vapor plasma by laser scattering techniques
is reported here for the first time. The scattered spectra obtained at 90' with scattering parameter
n=1.5—3 showed evidence of temperature inhomogeneities and/or plasma-wave damping by
electron-ion collisions. The total scattered-light intensity could be explained by inclusion of a Ray-
leigh scattering contribution from the cesium 6s-6p blue wing. These results also represent the
most non-Debye plasmas investigated to date by scattering.

PACS numbers: 52.25.Rv

Laser scattering is a powerful, routinely used diag-
nostic for measuring local electron densities and tem-
peratures in plasmas. ' To date, scattering has been
limited to hydrogen or noble-gas plasmas. The experi-
ment presented here using cesium vapor demonstrates
the feasibility of scattering in alkali-metal and
alkaline-earth vapor plasmas. Such scattering would
be a useful diagnostic for determining the currently
contested ionization mechanisms of resonantly
pumped metal vapors. 2 Secondly, the first detailed
scattered spectra of the high-frequency "electron
feature" for collective scattering (a ) 1.5) are
presented. Finally, scattering in the presence of the
fewest number of electrons per Debye sphere,
Nn[ =(4m/3)N, An] =1.6, where An is the Debye
length and N, the electron density, has been achieved.

The cesium vapor was contained in a heated cross-
shaped Pyrex cell with water-cooled f/7 ports. A
Chromel-Alumel thermocouple was used to monitor
the cell temperature and hence the cesium density us-
ing JANAF saturated-vapor-pressure tables. 3 Cold
( T, —0.2 eV), dense (N, =10' —5 x10'6 cm 3) cesi-
um plasmas were produced by irradiation of the vapor
with a 25-ns, 10 -W cm dye-laser beam operated
between 6000 and 6400 A. Hotter (0.3—1 eV),
more-Debye plasmas were obtained by two-photon
ionization of cesium atoms using a 30-ns, 108—10'0-
W cm 2 frequency-doubled Nd:glass-laser beam (A.
=5266 A). Further details of the ionization mechan-
isms and extensive diagnosis of N, and T, by emission
spectroscopy can be found in Ref. 5. The frequency-
doubled Nd:glass-laser wavelength was also used for
scattering since cesium has a convenient minimum in
its dimer absorption6 and emission spectrum at 53QO
A.

The light scattered at 90 was imaged onto the hor-
izontal slits of an f/4. 2 grating spectrometer (Bentham
M300) coupled to an RCA C31034A photomultiplier
and Tektronix 466 storage oscilloscope. This provided
2 —3-A, 15-ns resolution of the 0.5-cm by 100-p,m plas-
ma area viewed. Scattered spectra were recorded on a
shot-to-shot basis. A series of movable mirrors al-
lowed the cesium vapor to be pumped with either the
dye laser, the Nd:glass laser, or with both by introduc-

tion of a 15-ns delay of the Nd:glass-laser beam.
The first scattering experiments were recorded with

use of only one 0.1 —1-MW 5266-A beam which both
ionized and scattered. The results for the "electron
feature" for an initial cesium density of (3.5 +0.5)
x10'6 cm ' at three progressively decreasing laser
fluxes I are shown in Figs. 1(a)—1(c). The back-
ground light consisting of unrejected stray laser light
and continuum radiation has been subtracted. The
peak single-to-background ratios for the three cases
are 10, 5, and 2, respectively. Each experimental point
represents a 3 to 7 shot average. The theoretical fits
shown by the dashed lines, which include the instru-
ment function [full width at half maximum
(FWHM) =2.5 A] and laser bandwidth (FWHM=2. 5
A), are derived from the usual collisionless theory. 8

The plasma parameters deduced from the scattered
spectra are shown in Table I, where a, the scattering
parameter, is Al„„/7r J8A.n. Unfortunately, no com-
parison can be made with the results from emission
spectroscopy5 since line-shape distortions and non-
equilibrium level populations occur during strong laser
irradiation. An absolute calibration of the detection
system yielded N, = (3 +1) x10' cm ' which agrees
with the density deduced from the scattered spectral
shapes.

The reduction in temperature with decreasing laser
flux observed for nearly constant N, illustrates the im-
portance of inverse bremsstrahlung heating. The elec-
tron heating rate is given by

dTe

dt

where I, T„N„and X are in watts per square centime-
ter, electronvolts, inverse cubic centimeters and mi-
crometers, respectively, and g the free-free Gaunt fac-
tor is between 1 and 1.5 here. ' For an initial pho-
toelectron temperature of 0.54 eV and'. with use of the
electron density and laser flux listed in, the first row of
Table I, Eq. (1) predicts T, =0.8 eV w'ithin 10 ns, in
reasonable agreement with the temperature measured
by laser scattering. Unfortunately, the laser flux could
not be further decreased in this experiment to reduce
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FIG. 2. Electron feature of scattered spectrum fitted by
a =3 of collisionless theory (Ref. 8).
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FIG. 1. (a) Electron feature of scattered spectrum fitted
by a= 1.55 +0.05 of collisionless theory (Ref. 8), dashed
line, and a =1.55, c, =o.l of collisional theory (Ref. 14),
solid line. (b) Electron feature of scattered spectrum fitted
by a=1.7+0.05 of collisionless theory (Ref. 8). (c) Elec-
tron feature of scattered spectrum fitted by o. = 2.2+0.1 of
collisionless theory (Ref. 8).

the heating and the number of electrons per Debye
sphere because this was accompanied by a decrease in
electron density and hence an even greater decrease in
the number of scattered photons.

To overcome this problem, a second experiment was
performed which used the dye laser beam for ioniza-
tion and the 5266-A beam for scattering with a 15-ns
delay. A laser flux of 30 MW cm 2 was chosen for
the 5266-A beam to limit its preturbing influence on
the performed plasma to an acceptable 20'/o increase in
fluorescence. Figure 2 shows the scattered spectrum
for a cesium density of 2 3&10' cm 3, fitted by the col-
lisionless theory. Since the width of this satellite at
=co~ (the plasma frequency) detuning was approxi-

mately equal to the spectral resolution, 3.5 A, only a
minimum n of 3 can be assigned, yielding N, =(5
—6) &&10I6 cm ', a maximum T, =0.36 eV, and hence
a maximum NI3 =1.6, in good agreement with results
from emission spectroscopy. 5 Since the satellite spec-
tral position is proportional to N,I~2, the maximum
width of the satellite also sets a limit of 10lo on possi-
ble large scale ( ) A.I3) variations in density in the
plasma volume imaged. Such density inhomogeneities
were thought to contribute to the anomalously large
satellite widths observed in previous high-n scattering
experiments. "

However, for the nearly fully ionized plasmas of
Table I, laser-flux inhomogeneities will create tem-

TABLE I. Results of laser scattering shown in Figs. 1(a)—1(c).

I (GW cm 3) N, (cm ') T, (eV) ND

1.55 + 0.05
1.70 + 0.05
2.2 + 0.1

1.5
0.7
0.3

3.5 + 0.2 x 10'6
+0 2x10~6

3.15 + 0.3 x 10'6

0.9 +0.05
0.78 + 0.04
0.42 + 0.04

7.8 + 0.09
6.3 + 0.06
2.6 + 0.05
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perature rather than density variations. The wings of
the satellites at large detunings ( &20 A) shown in
Figs. 1(a)—1(c) which deviate from the theoretical
curves could then be explained by lower-o. scattering
from higher-temperature fully ionized regions, but
only if these exceed 2 eV.

It is unlikely, however, that this explanation can ac-
count for all three wings of Figs. 1(a)—1(c) since the
laser flux was decreased by a factor of 7.5 between
Figs. 1(a) and 1(c).

Moreover, collisions alter the scattered spectra as ei-
ther the non-Debye limit is approached" (Nn & 1) or
as n becomes large. '3 For 1 & n & 3, Lorentzian
wings due to collisional damping become observable
on the electron feature for

c, = p, n/o)p & 0.05,
where c, represents a ratio of collision frequency v, to
electron plasma frequency cup.

'4'5 Both electron-
neutral' ' and electron-ion' collisions can contri-
bute. However, electron-ion collisions' ' will dom-
inate in the present plasmas investigated by laser
scattering, and should be observable since c, =0.11,
0.17, 0.34, and Q.69 for the cases n =1.55, 1.70, 2.2,
and 3, respectively. The solid curve in Fig. 1(a)
represents a better theoretical fit by including such col-
lisions'4 for n =1.55 and c, =0.1. The range in c, over
which the theoretical curve would be within the exper-
imental errors is 0.05—0.13. However, further experi-
ments using two different k scattering vectors for the
same plasma are desirable to distinguish between the
effects of temperature variations and collisional damp-
ing on the scattered spectra. Nevertheless, as expected
theoretically, '~ it seems clear that the classical theorys

TABLE II. Comparison of scattered-light intensity at laser
wavelength to intensity expected for the ion feature.

Iexperiment Itheory

1.55
1.7
2.2

10-18
8—15
6—8

370+50
270 +50
310 +50

80+15
60 +20
40 +10

does not breakdown substantially at the electron
feature for Nn as low as 1.6 and n =1.3.

The light scattered at the laser frequency was record-
ed over five to ten shots, averaged, and subtracted
from the stray laser-light level. This will contain the
spectrally integrated "ion feature" whose calculated
half-width of 0.15 to 0.3 A is much smaller than the
2-A resolution of the detection system. The results
are shown in Table II together with the theoretical pre-
dictions based on the measured intensity of the elec-
tron feature and accounting for nonequal ion (T +)
and electron temperatures's due to the long (200—400
ns) thermalization times. ' The discrepancy between
theory and experiment is a factor of 10 larger than, for
example, the predicted 60'/o increase in the intensity of
the ion feature in a non-Debye plasma at n =1,
N, =0.5."

The more probable explanation for the enhanced
scattering is Rayleigh scattering from the blue wings of
the 6s-6p resonance transition at 8943 and 8521 A. Ig-
noring collisional redistribution of radiation at more
than 3000-A detuning from line center, the Rayleigh
scattering cross section is given by

o-R =6.6 x 10
f6s~pkpj 6s~nkp&

$ 2j=1/2, 3/2 '~laser ' 6s~/24p&

=1 xlQ 24 cm~ (2)

for f6.. .~p, , =0.814 and f6.. .~p, , =0.394. Hence,

the ratio of Rayleigh component to ion feature is given
by the following equation, valid for T,/T + & 15 in

cesium':

1.5 (1 +n') (1 +n' +n' T,/ Tc +)

a4

For the three cases n =1.55, 1.7, and 2.2, this ratio is
between 15 and 30. Thus, it is conceivable that Ray-
leigh scattering from the lower-fractional-ionization re-

gions of the plasma created by the lower-intensity spa-
tial wings of the laser beam can explain the large scat-
tered signals observed at the laser wavelength.

This process will need to be considered when analyz-

ing scattered spectra in the visible region from any
alkali-metal and alkaline-earth vapor plasmas.
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