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Higher-Order Correlations in Spectra of Complex Systems
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The two-level correlation function for the spectra of
complicated systems' determines essentially all of the
fluctuation measures which have so far been seriously
studied. Moreover, it determines two general proper-
ties, namely the Wigner-von Neumann level repulsion
(tendency of levels to avoid clustering) and the
Dyson-Mehta long range o-rder (large correlations
between distant levels). In an earlier analysis, 2 by
combining all the high quality nuclear data into a nu-
clear data ensemble (NDE) and by introducing new
spectrally averaged measures, we found an extremely
close agreement with the Gaussian orthogonal ensemble
(GOE) predictions for two-level correlations. This
goes a considerable distance toward confirming
Wigner's suggestion that "the Hamiltonian which
governs the behavior of a complicated system is a ran-
dom symmetric matrix, with no particular properties
except for its symmetric nature. " Because of that, and
because of recent interest in problems of quantum ex-
tensions of classically chaotic motion, 4 it is important
to ask whether the GOE, which follows naturally from
Wigner s proposition for time-reversal —invariant sys-
tems, gives proper predictions for fluctuations of

I

n =r,

higher order, say three- and four-level correlations.
These of course are not determined by the two-level
function, even though a lower-order function does im-
pose certain complicated constraints which are largely
unknown on the higher-order ones.

Consider an infinite stationary spectrum with unit
average spacing. The k-level correlation function Rk
(r&, . . . , r„) is the probability density of observing a
level at each of the k points r &, . . . , r„, irrespective of
the location of the other levels. The Rk's for k ) 1

(R ~= 1) depend only on the relative variables r; —rj,
e.g. , R (2r&, r )2=R2(r~ —r2). The probability E„(r)
that the number statistic n (r), the number of levels in
an interval of length r, takes the value k is given by

Ek(» )=, X ( —1)'t Rk +i (r)

R„(r)=
~0 Rk(rg, . . . , rk)dr) (2)

A

For small r, Rk/k! gives the probability that in an in-
terval of length r there are k levels. From (1) we
have'

(3)

X'(r ) = R,(r ) —r (r —1),

K3(r) =y~(r)X (r) =R3(r) —3(r —1)X (r) —r (r —1)(r —2),

K4(r ) = y2(r) X (r) =R 4(r) —(4r —6)K3(r) —3X (r) —(6r2 —18r + 1 1 ) X (r ) —r (r —1 ) (r —2) (r —3),

(4)

(5)

(6)

for the average, variance, and third and fourth cumu-
lants of n, respectively; y&, y2 defined in (5), (6) are
the skewness and excess, respectively. Note that in
general the kth cumulant depends on all R, (r) with
v ~ k so that X, K3, and K4 derive from the 2-,
(2+3)-, and (2+3+4)-level functions, respectively.

To understand the distinct role played by level

t

repulsion and long-range order on the k-level fluctua-
tion measures we shall, apart from GOE, also consider
the following: (i) Poisson ensemble: This is an ensem-
ble characterized by an exponential [exp( —x ) ]
nearest-neighbor spacing distribution p (x) and no
correlations between spacings. One has Rk = 1 for all
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A4(r)

GOE Poisson UW GUE

rr'r /18

rr 4r 6/1350
8 10

6 615 000

f 2

r4

err /6

7r 2r'/80

VT r
1680

7r'r 4/18

7r r /48 600
12 16

53 581 500 000

TABLE I. Small-r behavior of R2, R3, and R4. providing efficient measures of level repulsion and
long-range order. For level repulsion it is necessary
that R2(r) be zero at r = 0 [implying that p (x) = 0 at
the origin] and the slope is then a measure of level
repulsion. Thus by considering R 2(r) = n +Pr for
small r, so that R2(r) = nr + (P/3)r, we can estimate
n and P from data [see Tables I and II and Fig. 1(a)].
Using r =0.25 and 0.5 we obtain n= —0.02 (con-
sistent with zero) and p=1.56 (consistent with the
GOE value 7r /6 to within —10%) . To measure
long-range order, consider

lc, so that Rk ——r", and X (r) =K3(r) = ~4(r) =r Th. is
ensemble exhibits neither level repulsion nor long-
range order (ii.) Uncorrelated Wigner (UW) ensemble:
There are, as in (i), no correlations between spacings
but the spacing distribution p (x) is that of GOE, for
which the Wigner surmise [(m.x/2)exp( —7rx /4)],
used here, is an excellent approximation. This ensem-
ble exhibits no long-range order but it does show level
repulsion and in fact has the same small-r behavior as
that of GOE for R2(r). (iii) Gaussian unitary ensemble
(GUE): This is an ensemble of complex Hermitian
matrices, valid, unlike GOE, for systems in which
time-reversal invariance is completely broken. This
ensemble exhibits both features more strongly than
GOE. Poisson and UW, unlike GOE and GUE, are
not matrix ensembles.

GOE and GUE predictions are known in closed
form' for k =2. For k & 2 we have obtained the
results from the tabulated values of the Ek functions. 7

GOE-sample errors needed for comparison with data
of limited size (such as the NDE) have been estimated
from Monte Carlo calculations. The errors for other
ensembles are in general larger than in GOE for Pois-
son and UW, and smaller for GUE. For the experi-
mental data analyzed here, an NDE of 1762 levels, see
Ref. 2.

We discuss first a new analysis of the R2 function

X (r) = ar + 2b lnr + c (7)

valid for the above ensembles for r ) 1. In (7), a js
given by

+ OO

a =1—J1 Y2(s)ds,

where R2 ——1 —Y2, for long-range order we must have
a =0, a condition on the total integral of the two level-
cluster function Y2 which expresses that the spectrum is
"incompressible"; b may be nonzero if Y2 falls off as
b/s2 (as it does for GOE and GUE) and provides a
measure of the long-range order (the smaller b, the
more rigid the spectrum is, provided that a = 0); c be-
comes independent of r for large r. NDE values of a,
b, and c obtained by a least-squares fit of X2(r) with
(7) in the range 1 ~ r ~ 25 are —0.007, 0.11, and 0.45,
respectively. They agree with GOE predictions
(0+0.005, 0.10+0.02, 0.44+0.02) but disagree with
Poisson (1,0,0), UW (0.273,0,0.17), and GUE
(0,0.05,0.34) values.

We now turn to the higher-order correlations. In
Figs. 1(b) and 1(c) are displayed y& and y2 as func-
tions of r and in Table II are given values of R3 and
R4. We see that only GOE agrees with the data for the
whole range of r and for all quantities.

Let us focus first on the small-r behavior (r & 1).
UW and GOE give identical results for R2 but differ

TABLE II. Values of R 2, R 3, and R 4 for NDE, GOE ( + one sample error), UW, and GUE.

NDE

R (x10 )2

GOE UM GUE NDE

2
R (x1Q )3

GOE UW GUE NDE

2
R (xlQ )4

GOE UW GUE

0.25

0.50

0.75

1.0

0.7

5.9

20. 3

44. 8

0.8+0.1

6.4+0.4

20. 3+0.7

44. 6+0.9

0.8 0.2

6.3 3.0

20. 1 13.2

34.4

0.1

1.2
5.8

0.005

1.1+0.3 2. 3 0.1

5.4+0. 8 10.2

0.1+0.1 0.3

0.1 0.1+0.1 l. 3 0.001

1.5
2.0

128.5 127.6+1.3 133.0 113.8

259.0 258.4+1.5 211.2 241.6

48. 2

180.7

45. 3+2. 3 68. 2 21.9

178.Q+4. 8 239.4 125.5

3.2 4.2+1.4 22. 0 "-0.3

44. 7 46.8+5.0 144.3 ~12
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FIG. l. (a) X' r(r), (b) y, (r), and (c) y2(r) for r ~ 5.
The sample errors corresponding to GOE th
ows. or, they rise monotonically from 0.001 for

r =0.25, to 0.009 for r =1, and 0.03 for =5. F I, y
are of the order of 0.02 for 0.25 ~ r ~ 1.

or r = . For yi, they
—r — .5 and then rise to

to 0.05 for r =
or r =5. For y2, they decrease from 0.08 f =0.ol r= .25

o . or r =1.5 and then rise again to 0.08 for r =5.
Although not shown

'
wn in the figure, the results for 5 ~ r ~ 25

have also been calculated, and NDE and GOE va ue
consistent.

an values are

for R 3 and R 4. In fact (cf. Table I) as r 0, R 2 goes
to zero in the same way but R and R3 an 4 go to zero more
rapidly for GOE than UW. The diff
a ri ute to intrinsic higher-order correlation effects.
Experimental values (cf. Fig. 1 and Table II) do distin-

sho win thwing erefore three- and four-level effects of the
GOE type in the data.

Consider finally the large-r (r & 1) 1results. y& and

y2 go to zero for all ensembles indicat' th hica ing t at the dis-
ri u ion of n (r) becomes Gaussia Th

'
n. e approach to

ata and evenzero, however, is faster for GOE and d
more for GUE) than for Poisson and UW. In fact z3
and z4 become small for GOE (and GU ), not ruling
out the possibility that they go to zero. One can prove

e ea ing term in the ex-
pansion of K3 and K4 is linear in r, whereas for GOE

conse
i will be at most logarithm' Thic. 1S is a

sequence of the relations satisfied b h
te rais of t

is ie y t e total in-

g s o he k-level cluster functions and may be re-
garded as an as epect of long-range order in the three-
and four-level correlations.

%'e have thusus presented a new analysis of the two-
in ro uced preciseleve correlation properties and int d

measures of level repulsion and 1ong-range order. In
particular, the total integral of the two-leo e two-level cluster
unc ion, essential for determining long- d

deduced from the data. We h
ong-range order, is

met ods for analyzing higher-order correlations. We

1

have shown for the first time th t th ha e t ree- and four-
evel effects predicted by the GOE are present in the

nuclear resonance data.
~ ~ ~

Significant progress in under t d's an ing igner's
prescription for complicated systems has been made

cerning the relationship between classical and quantum
chaos: Genericall an
should ex i

'
hi&it Poisson-type energy-level fluctuations'

er an, quantization of nonintegrable
time-reversal —invariant systems should yield fluctua-
tions intermediate between Poisson and GOE
latter a 1 inpp y' g for systems for which almost all 1

cal tra ecj ctories are chaotic. The conject
'

1

os a c assi-
njec ure is we 1 sup-

ported by numerical calculations for two-d'or wo- imensional

for lev
mo e ami tonians. 4 The best experiment 1en a evi ence

nuc ear spectra
which we have used but

evel fluctuations comes from 1
2

atomic9
u t"ere is also evidence from

atomic and molecular' spectra and from the low-
temperature ro ertp per ies of small metallic particles. ' All

tion ro erti
of these tests have centered on the two-1e wo- evel correla-

the GOE
ion properties. Present results confirm th 1'evai ityof

consider a
even for higher-order correl t'a ions and go a

t"consi era e istance toward showing thg e universali-
y of the level fluctuations h' h

'
yw ic is implied by

Wigner's prescription and the above conjecture
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