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Intermittent Chaos and Low-Frequency Noise in the Driven Damped Pendulum
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A study of intrinsic and noise-induced intermittency and low-frequency noise due to crises is re-
ported for numerical simulations of the sinusoidally driven dampled pendulum and radio-
frequency-driven Josephson junctions. The effects of fractal boundaries of the basins of attraction
on the functional form, noise sensitivity, and noise scaling of low-frequency power spectra are con-
sidered.
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A fascinating problem in modern dynamics is the
origin of qualitative changes in the behavior of non-
linear physical systems on very long time scales and
the resulting low-frequency noise. This intermittency
is the subject of much current theoretical work on
dynamical systems' 9; important issues are the dif-
ferent mathematical origins of intermittent chaos and
the influence of external noise. A dynamical system
which models the interaction of competing periodici-
ties and frequency locking in a wide variety of physical
systems is the equation describing the damped driven
pendulum. This equation is formally identical to the
resistively-shunted-junction (RSJ) model for radio-
frequency —driven Josephson junctions. The study of
chaos in Josephson junctions has been the focus of re-
cent theoretical' and experimental ' work; in
most cases, the only experimentally observable chaos
is intermittency.

In this Letter we report a study of intermittency in
numerical simulations of the damped driven pendulum
emphasizing the role of the basins of attraction for dif-
ferent stable states of the dynamical system, both in
intrinsic and external-noise-induced intermittency.
We find that the basin boundaries are fractal sets, 25

and that intrinsic intermittency occurs via a crisis4 5:

the intersection of a chaotic attractor with an unstable
periodic orbit on the basin boundary. The intrinsic
low-frequency power spectrum is power law (I/co ) at
the crisis and becomes approximately Lorentzian
above; both cases are relatively insensitive to external
noise. The fractal dimension of the basin boundaries
approaches d=2 just below the crisis, and external
noise easily induces intermittency.

Pomeau and Manneville (PM) describe three
characteristic ways in which intermittent chaos can oc-
cur near periodic stable orbits in mathematical dynami-
cal systems without external noise; two are discussed
here. Type 1 intermittency is associated with the tran-
sition from chaos to a stable periodic orbit via a
saddle-node bifurcation. Its qualitative features are ir-
regularly spaced bursts of chaotic noise which separate
long, nearly periodic intervals for values of a driving
parameter g below the critical value g, at which the bi-
furcation occurs. The average laminar time ~ scales

as '

where g and g, are defined above. We show below
that crisis-induced intermittency can produce low-
frequency noise with an approximately 1/co power
spectrum at the transition g = g, . Both Pomeau-
Manneville and crisis-induced intermittency are
present in each periodic window in the chaotic region
of the one-dimensional logistic map; for example, PM
type-1 intermittency near the saddle-node bifurcation
which produces the periodic orbit, and crisis-induced
intermittency near the crisis which destroys the banded
chaotic attractor. 4

The equation describing both the damped,
sinusoidally driven pendulum and the RSJ model for
Josephson junctions given in reduced units'3 is

8+ (I/Q)8+ sin0 = g costoot+ Sg(t), (3)

where 9 is the pendulum angle, Q is the quality factor,
g and too are the amplitude and angular frequency of
the driving torque, and Sg(t) is a possible external
noise term, taken to be 5g(t) =0 unless noted. In or-
der to avoid uncertainties due to noise in analog simu-

for nearly periodic flows with quasi-one-dimensional
return maps. Type 3 intermittency occurs when a tra-
jectory diverges slowly from an unstable periodic orbit
at a rate which approaches zero at the orbit; its qualita-
tive features are similar to those of type 1. Both types
of intermittency produce large amounts of low-
frequency noise, which for type 3 can have an approxi-
mately I/co power spectrum, 2 6 20 where co is the fre-
quency.

Grebogi, Ott, and Yorke" have considered crises and
long-lived chaotic transients which occur in dynamical
systems when a stable chaotic attractor collides with an
unstable orbit on the boundary of the basin of attrac-
tion. These crises can produce intermittent switching
between separate small-scale metastable chaotic orbits
on a very long time scale. The average time 7 on
each small metastable chaotic attractor for the quasi-
one-dimensional case scales as~
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lators we solved Eq. (3) on a digital computer ustng
double-precision arithmetic and a fourth-order
Runge-Kutta algorithm with numerical precision
exceeding thirteen decimal places. The solutions for
0(t) display a rich variety of periodic, chaotic, and in-

termittent behavior which is described in detail else-
where. 'o zo

To study intermittency and low-frequency noise we
focused on several sets of parameter values for which
9(t) has running modes in which the angular velocity
0(t) has an average positive or negative dc component.
These running modes, produced by symmetry break-
ing, '3 correspond to positive and negative zero-current
voltage steps in an rf-driven Josephson junction. For
parameter values coo= —', , 0=2, and g & 1.5, for ex-
ample, two separate stable periodic running modes ex-
ist with dc angular velocity 0= —,'t0o. As g increases
these modes become chaotic, yet remain separate. At
a critical value 1.4954 & g, & 1.4955 intermittent
switching between positive and negative average—
angular-velocity modes occurs on a very long time
scale. This intermittency is intrinsic and occurs
without added external noise [Sg ( t) = 0].

The qualitative nature of this intermittent switching
is shown in the phase portrait 0 vs 0 in Fig. 1(a) for
g = 1.5000, where the orbit irregularly switches
between positive and negative directions. This intrin-
sic intermittency is induced by small-scale chaotic fluc-
tuations present in both modes. Two low-frequency
power spectra S 2(t0) are shown in Figs. 1(b) and

1(c), one at g=1.4955, just above the transition, in
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F1G. 1. (a) Phase portrait, and (b), (c) power spectra
computed from Eq. (3) without added noise; parameter
values coo= T, 0= 2; (a) and (c) g= 1.5000; (b) g = 1.4955.
Dashed lines of logarithmic slope —1 and —2 are provided
for reference.

Fig. 1(b), and one for g = 1.5000 in Fig. 1(c). Because
the dc component of angular velocity in the two run-
ning modes is not zero, intermittent switching between
modes produces large amounts of noise at frequencies
cu less than the driving frequency coo. Just at the tran-
sition g = g, the noise has an approximately I/cu power
spectrum over more than two decades in frequency t0

as shown in Fig. 1(b). At higher g a knee occurs at a
low frequency, and the noise spectrum resembles a
Lorentzian as shown in Fig. 1(c), which represents
typical behavior. " The qualitative nature of the transi-
tion to intermittency illustrated in Fig. 1, small-scale
chaos to intermittent chaos, is not described by any of
the Pomeau-Manneville types, 2 but is in agreement
with crisis-induced intermittency as described by Gre-
bogi, Ott, and Yorke. 4

In order to investigate further the nature of the tran-
sition to intermittency, we computed the basins of at-
traction in 0 and 0, shown in Fig. 2, for the positive
and negative stable or metastable running modes at
several values of g. far from the crisis for g=1.4600
and g = 1.4800 in Figs. 2(a) and 2(b) where the run-
ning modes have dc angular velocity 0 =coo, and near
the crisis, on either side, for g = 1.4954 and g = 1.4955
in Figs. 2(c) and 2(d). To compute Fig. 2, pairs of ini-
tial conditions 0 and 8 at t0ot = 0 were chosen on a grid
spanning 0 & 0 & 27r and —3 & 0 & 3; for each initial
condition Eq. (3) was integrated numerically for thirty
drive cycles to allow the initial transient to decay, and
the time-average angular velocity 0 was computed for
the following ten cycles. The distribution of 0 reliably
allowed assignment as a positive or negative stable or
metastable running mode. The set of initial conditions
0 and 0 yielding positive modes constitutes the basin
of attraction for this mode and is shaded in Fig. 2; the
basin of attraction for the negative mode is white. For
all four cases in Fig. 2 the basin boundaries are fractal
sets as discussed below. Also shown in Fig. 2 are the
Poincare sections at drive phase ~ot = 0 (mod2m) of
the stable attractors for the two running modes, shown
as heavy dots or lines. The Poincare sections of two
unstable period-3 orbits which lie on the basin boun-
dary are shown as small open circles in Figs. 2(c) and
2(d).

Examination of Figs. 2(c) and 2(d) shows a develop-
ment of both the Poincare sections of the stable attrac-
tors and the basin boundaries characteristic of an inte-
rior crisis. 4 A pair of stable periodic running modes is
produced by a saddle-node bifurcation at g=1.4919;
as g increases the two stable orbits become chaotic, but
remain separate, each lying entirely within its basin as
shown in Fig. 2(c). An interior crisis occurs between
Figs. 2(c) and 2(d) at which the two unstable period-3
orbits on the basin boundary collide with the stable
period-3 chaotic attractors. At this point the two
modes lose their separate identity and join to form a
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(c)

(b)

FIG. 2. Basins of attraction in angle 0 (range 0 to 2'�) and angular velocity S (range —3 to 3) for positive (shaded) and nega-
tive (blank) stable or metastable running modes computed from Eq. (3) for coo= 3, Q = 2, and drive amplitudes (a)
g = 1.4600, (b) g = 1.4800, (c) g = 1.4954, and (d) g = 1.4955 (see text). Also shown are Poincare sections of the attractors
(solid circles) in (a) to (d) and unstable orbits (open circles) in (c) and (d) at phase coot = 0 (mod2m).

folded chaotic attractor shown in Fig. 2(d). The basins
of attraction also cease to exist separately, although
one can reliably compute separate metastable basins as
in Fig. 2(d). Pomeau-Manneville type-1 intermittency
presumably occurs for parameter values near the
saddle-node bifurcation which produces the two sets of
stable and unstable period-3 orbits shown in Fig. 2(c).

The computed return maps 0„+3 vs 0„ for the two
chaotic period-3 Poincare sections shown in Fig. 2(c)
each consist of three nearly one-dimensional parabolic
segments which cross the diagonal 8„+3=0„. The
measured scaling of the average time r in each meta-
stable running mode for g ) g, is 1jr~ (g —g, )" with
v = 0.5 +0.15 in agreement with both models, Eqs.

(1) and (2), in the quasi-one-dimensional case.
Far from the crisis, in Figs. 2(a) and 2(b), the basin

boundaries display folding characteristic of chaotic sys-
tems, yet remain relatively simple. A striking increase
in complexity is shown in Figs. 2(c) and 2(d) near the
crisis at g, as the folding evident in Figs. 2(a) and 2(b)
evolves into complex structures resembling random
white noise in 0 and 8. The computed26 dimension d
of the basin boundaries for Figs. 2(a) to 2(d), respec-
tively, is d=1.63, d=1.88, d =1.97, and d=1.98; for
white noise d =2. Fractional dimensions d ) 1 imply
that the basin boundaries possess structure on arbi-
trarily small scales in 0 and 0 and raise questions
about the functional form of low-frequency power
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e2 —d (4)

In this picture, arbitrarily small excursions e near the
crisis at g = g, where d = 2 produce a rapid noise-
induced switching rate I/r —too which destroys both
intrinsic stable and intermittent states. However, as
shown above, neither the power-law functional form
of the intrinsic power spectrum at the crisis nor the
relative insensitivity to external noise agree with this
picture. This implies that the locations of the attrac-
tors and the metastable basin boundary remain highly
correlated until the noise amplitude becomes quite
large.
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spectra and the influence of external noise.
We repeated the simulations above including an ad-

ded random-noise term 5g(t) in Eq. (3) with a flat
power spectrum. The effect of noise is to produce
elongation of the Poincare sections along directions for
which the flow toward the attractor is slowest or diver-
gent (chaotic), yielding orbits similar in appearance to
intrinsic chaos shown for two different cases in Figs.
2(b) and 2(c). Well below the crisis at g, the finite
minimum separation of the attractor and the basin
boundary requires a finite noise-induced excursion e
in 0 and 0 to create extrinsic intermittency. When the
basin boundaries are relatively simple, as in Fig. 2(a),
and the fractal dimension is well below 2, extrinsic in-
termittency is not easily produced. For drive ampli-
tudes g closer to g„shown in Figs. 2(b) and 2(c), the
basin boundaries are complex with dimension d = 2,
and this minimum excursion approaches zero. In this
case extrinsic intermittency is easily induced by very
small amounts of external noise Bg (t). When present,
intrinsic intermittency is surprisingly insensitive to
physically reasonable noise levels. The power spec-
trum just above the crisis in Fig. 1(b) remained essen-
tially unchanged until the rms noise amplitude aver-
aged over 0 drive cycles exceeded Sg, ,= 1.4&& 10
a further increase in noise produced a flat power spec-
trum below a corner frequency which increased with
external noise to co

——O. Igloo for g, ,= 1.4x 10
Both the functional form and noise scalings of the

noise-induced power spectrum can be estimated under
the rather strong assumption that noise sufficiently
modifies the attractor to produce a random sampling of
phase space 0 and 0. With this assumption the power
spectrum is Lorentzian with a characteristic frequency
equal to the noise-induced switching rate 1/r. Given a
noise-induced perturbation of radius e in 0 and 0, the
fraction f of initial conditions which yield uncertain
steady states, and by assumption 1/r, scales as'
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