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Dissipative Quantum Tunneling in a Biased Double-Well System at Finite Temperatures
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We study quantum tunneling in a biased double-well potential in the presence of Ohmic dissipa-
tion with a friction coefficient n ) 1. The tunneling rate out of the metastable well is calculated in
real time as a function of the temperature T and bias energy e. The T=O result agrees with a
droplet-model calculation in imaginary time. At low temperatures we find an enhancement to the
T= 0 rate varying as ( T/e) 2.

PACS numbers: 05.30.—d, 71.25.Mg, 74.50.+r

Recently there has been much interest in under-
standing the effect of dissipation and finite tempera-
ture on quantum mechanical tunneling. ' 3 The case of
Ohmic dissipation, which is relevant to the problem of
macroscopic quantum tunneling' and other physical
systems, 4 has received considerable attention. Most
authors to date'2 have studied decay from a meta-
stable well into a continuum and employed an
imaginarytime app-roach to obtain the decay rate both
at zero'2 and at nonzero temperature. 2 All of these
calculations rely on associating the decay rate with the
imaginary part of the system's free energy. Unfor-
tunately, it has not been possible to check these results
independently by a real-time calculation. 3 In this
Letter we consider instead double-well systems in
which the tunneling is from the metastable well into a
bounded stable well slightly lower in energy. Besides
being appropriate for many physical systems, this
choice has the added advantage that we are then able
to compute directly the system's real-time dynamics as
it relaxes into the lower well. Doing so, we obtain the
tunneling rate as a function of the friction coefficient
n, the temperature T, and bias energy e. In addition
we carry out an imaginary-time calculation of the T= 0
tunneling rate by applying the droplet-model tech-
niques to the system's partition function. A compar-
ison shows complete agreement with the real-time
results, thus confirming the validity of our imaginary-
time approach.

We are interested in a quantum coordinate q with a
mass M which moves in a symmetric double-well po-
tential with a small bias energy e between the two
minima at + qp/2. The dissipation is introduced in the
usual way' via a linear coupling of q to a bath of oscil-
lators assumed to have an Ohmic spectrum with fric-
tion coefficient q We .assume that the barrier height
between the two wells is much larger than the small
undamped oscillation frequency, «op, in either well.
Consequently, when &=0 the level splitting of the
ground state in the absence of dissipation, b, p, satis-
fies6 Ap « «op. If in addition we assume that both the
temperature and bias energy are much smaller than the
smallest single-well frequency «ob (equal to «op for
weak damping and M«ozp/g for strong damping), then it
is possible to reduce the double-well problem to an ef-
fective but equivalent two-state system. This pro-
cedure will be discussed in detail elsewhere7 and is
described only briefly here.

Imagine dividing the bath of oscillators into two
groups; those with frequencies larger or smaller than a
cutoff frequency «o, chosen to satisfys T, e « «o,« «ob. The high-frequency oscillators will reduce the
bare level splitting Ap, giving an effective or renormal-
ized level splitting b. Since the remaining oscillators
all have frequencies much less than «0b it can be ar-
gued that it is possible to truncate to a two-state sys-
tem coupled to the low-frequency oscillators with a
Hamiltonian

H= ——,'Itb, «r„+ —,'e«T, + X —,
' (p2/m + m «o2x2)+ , qpo, x C x—

b, («o, ) = g(n, up) («o,/«op) b, p (3)

with g a function only of the dimensionless friction
coefficient a=—qqp2/2nt and the dimensionless "bar-

where o-„and o-, are Pauli matrices. The spectral den-
sity of the oscillators, defined by

J(«o) = (n/2)X (C'/m «o )(h«o —«0 ),

has an upper cutoff «o, . For an Ohmic bath J(«o) is
linear in «o, J(«o) =q«o. The renormalized level split-
ting in (1) also depends on the cutoff «o, and to lowest
Order in «o,/«ob iS giVen by

~ rier height" up= M«opqp/k«op. The precise functional
form of g depends on the detailed shape of the double
well. However, in the large-a limit g —(«op/«ob)—(n/up) independent of the shape of the double
well. In this limit the undamped frequency «op cancels
in (3), leaving «o, scaled by the overdamped frequency
Ma&~/7i. The tunneling rate which we obtain from the
two-state Hamiltonian (1) (see below) can then be ex-
pressed back in terms of the double-well parameters by
use of (3) to eliminate A(«o, ) in favor of Ap. The ar-
bitrary frequency «o, drops out of the resulting expres-
sion.
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We first consider the real-time dynamics for the
Hamiltonian (1). We are interested in computing
P(t) = (a.,(t)) given that for t & 0 o-, is localized in
the +1 state. We follow very closely the recent calcu-
lations by Chakravarty and Leggett9 (CL), generalizing
their results to include a nonzero bias. Consider the
exact double path integral [over functions o, (t-) and
o.,'(t) ] for P(t), which results after averaging over an
initial thermal distribution of oscillators at temperature
T. As shown in CL, by the writing of the double path

I

integral as a single path integral over four states
(a.,= + 1, a,'= + 1) and consideration of the transi-
tions between the diagonal states (o.,= a.,', referred to
as sojourns) and the off-diagonal states (o-, = —a,',
referred to as blips), P(t) can be expressed as a power
series in b, 2. In the term of order h2" there are 2n
transitions at times t, (i = 1, . . . , 2n) with n blips (in
the time intervals tzj 1 to t2J) separated from one
another by sojourns. We refer the reader to CL for de-
tails. Generalizing to nonzero e we find

oo

P(t) = X ( —1)"5'" dt,„dt,„, dt, F(t, , t2, . . . , t2„),
n=p

(4)

F=exp—q2 N

XSJ 2 " X exp—
~ j—1 fg

—+1)

Qp
2

X Ajk&j&k
j,k=1j)k k=P

2
Qpcos gj Xjk — 5 t2jhk 0—

where b, t2J = t2J
—t2J 1 and to equals —~ by defini-

tion. The functions SJ, Ajk, and Xjk are defined by

SJ P2J, 2J —1 (6a)

Ajk
= P2k, 2J —1+P2k —1, 2J P2k, 2j

—P2k 1, 2J 1, —(6b)

jk
= R2J 2k~1+ R2J —1, 2k

—R2J, 2k R2j —1,2k+1, (6c)
where R„~—= Q1(t„—t ), P„=—Q2(t„—t ), and the
functions Q1 and Q2 are

Q1(t) = do) cu 2J(0)) sin&et, (7a)

Q2(t)

da) cu 2J(cu)(1 —cosa)t)coth( ,'~). (—7b)J p

The e dependence enters only through the last term in
(5).

If Q2(t) grows large with time the first term in (5),
A (t) =—exp[ —qoQ2(t)/7th], suppresses configurations
with wide blips. This enables us to put a rough upper
bound on the average blip length (t) of

(t) & „I dt tA(t)/ ~ dt A(t). (8)

P(t) = —tanh( —,pe) + [1+tanh( —,
' pe) ]exp( —I t),

If the average blip length is small compared to the typ-
ical time scale of a blip and its neighboring sojourn
[which is expected to be the time scale of P(t); i.e.,
the tunneling time], Eq. (5) can be simplified consid-
erably. One can ignore all interblip interactions
(Ajk=0) and all but the nearest-neighbor phase fac-
«rs X&+1J —- Q1 (htzj). Within this "dilute blip" ap-
proximation P(t) can be determined explicitly. The
tunneling time I ' which emerges from the calcula-
tion must satisfy I' » (t) in order that this pro-
cedure be self-consistent.

For the case of an Ohmic spectrum Q2(t) grows log-
arithmically with time giving (at T= 0) a blip suppres-
SiOn faCtOr A(t)=(1+co~2t2) . FOr n &1, (8) then
provides an upper bound on (t) proportional to co, '.
However, no such bound exists when n & 1, suggest-
ing that the dilute-blip approximation may be unreli-
able within this regime. '0 We thus restrict attention to
the case n & 1.

Within the dilute-blip approximation, F in (5) be-
comes a simple product of terms depending on b, t2J.
The Laplace transform of P(t) is then a geometric
series which can be summed. For T, e, h « co, we
find upon Laplace inversion the desired result" for the
real-time dynamics when n & 1:

2~T ' ' cosh( —,'Pe)
r = „' ~r(n+iPe/2n ) ~'.

2'~ A 0)g I' 2n

Equation (9) describes exponential incoherent relaxa-
tion with a rate I'. Since we are considering a biased
double-well potential (in contrast to tunneling into the
continuum) it is also possible that the system can exhi-
bit underdamped coherent oscillations. ' For n ) 1
these oscillations are suppressed. As e 0 the tunnel-
ing rate I' reduces to the e = 0 result, Eq. (14) in CL.

We now examine the self-consistency of the above
procedure. From (10) we deduce that (t)I = O(b, 2/

co, ) « 1 irrespective of how large T, e, and b, are
relative to one another. Thus the dilute-blip approxi-
mation is self-consistent.

Before using (3) to express (10) back in terms of
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the original double-well parameters, we rederive the T=O tunneling rate using an imaginaryti-me approach. "
Consider the partition function for the Hamiltonian (1) expressed as a path integral over functions o-, (T) = +1,
{x (r) },with the imaginary time 7 running from 0 to P. After the performing of the oscillator path integrals and
the scaling of all times by cu„v r' = cu, ~, the partition function is given by

t ' 2'
p pCiO ~T2

Z —X J d&2n i
.
J driexp( —S),

n=p 2~c ~2n —i
i

with the action

e t'i'". a ~i'"~ t, [~,(~) —o.,(~') ]S= ) dr ag(7 ).+ —) dr J~
d~'

2CU p OO 1+ ~ —~' (12)

Here Ti, .', 72 denote the times that o, (~) jumps
from one state (+, —) to the other ( —,+). This
partition function is equivalent to that of a one-
dimensional inverse square Ising model in an external
field e, and for n &1 is spontaneously magnetized. '4

Away from the critical region near n=1 [of width
(b,/co, )2] and in the limit 5/cu, &( 1 the bulk phases
are effectively frozen with negligible internal fluctua-
tions. It is in precisely such a limit that a droplet cal-
culation is expected to be valid.

Consider then a single droplet configuration of the
path, o.,(~), equal to +1 everywhere except a region
of length r equal to —1. The dimensionless droplet
energy U(r), obtained from the action S, is given by

U(~) =2a ln(1+ v) —(e/co, )~. (13)

This function has a maximum at ~p= 2a(e/co, ) ' —1
which corresponds to the "critical droplet. " One
naively expects the decay rate into the stable phase to
be proportional to exp[ —U(vp)]. This is in fact the
case; however, to obtain the correct prefactor we fol-
low the procedure developed by Langer. 5 Since the in-
teraction between droplets falls off as v 2 the partition
function (in the metastable phase) can be well approx-
imated by an ideal gas of such droplets,

(l3~, )" P~o ' n

(g/2ai ) 2n d& e
—U(r) (14)n! c iso

This procedure is valid since the typical, separation
between droplets (i.e. , the tunneling time which
emerges below) is much larger than the critical radius

t

After exponentiating (14) and taking p ~ we
find the ground-state energy to be

Q2 woo

4', " o

This integral is formally divergent and a standard ana-
lytic continuation must be used. The procedure5 6 is
to carry the integration contour along the real axis to
the saddle point at ~p, at which point it is deformed
into the complex plane down the direction of steepest
descent. This introduces an imaginary part in Ep. As-
sociating a tunneling rate with 2ImEp/t gives com-
plete agreement'5 with the T= 0 real-time result which
follows from (10).

Although the imaginary-time calculation (using the
system's partition function) gives the correct decay
rate, it is by no means obvious that this is a general
feature of all decay problems. In particular, for classi
cal systems the dynamics is not specified by the parti-
tion function and a given "imaginary-time" calcula-
tion is not necessarily appropriate for the dynamics of
interest. For the quantum system considered here,
however, agreement between the two methods is
somewhat less surprising, since the partition function
retains some of the noncommuting aspects of the
dynamical variables. Such agreement is an interesting
new result and lends credence to the imaginary-time
approach (at least when quantum coherence effects are
unimportant) .

We finally express the tunneling rate back in terms
of the original double-well parameters by inserting the
effective level splitting A(co, ) (3) into the two-state
results (10). The result is

(17)

T' ' - ' cosh( —,
' P~)r = g'(n, wp)

' ' Ir(n+ ip~/2~) I'. (16)
20)p ii cop r (2a)

i

Notice that as required the arbitrary cutoff frequency cu, has dropped out of the calculation. ' For a & 1,
bp « pip, and e, T « ~, , (16) is what we believe to be the exact leading tunneling rate for a system in a biased
double well, coupled to an Ohmic spectrum of oscillators. For T &( e an asymptotic expansion of the I function
gives

r = r ( T= 0) {1+~2 x —,
' [a (2a —1)(2a —2) ] ( T/e)2+ 0 ((T/e4)),

I (T=0) = g2(n, vp)—~
hp2 (e/heep)2

(18)
2 Qlp I (2(x)
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For larger n, we have g —(n/vo), which cancels
the leading large-n behavior of the gamma function in
(18). Hence in this limit the T=0 tunneling rate is
suppressed exponentially in n. Caldeira and Leggett'
also found an exponential dependence on n for the de-
cay rate from a metastable well into the continuum.
However, since (18) only applies to a bounded double
well a precise comparison between these results is not
possible.

At low temperatures (17) gives a tunneling enhance-
ment'7 which varies as ( T//e) 2 It is. instructive to con-
trast this with a prediction based entirely on equilibri-
um considerations. Consider the equilibrium density
matrix, p,~(q), for a coordinate q in a harmonic-
oscillator potential coupled to a bath. It has been sug-
gested that the tail of p,„can perhaps be associated
with the tunneling rate out of a metastable well,
I —p,q(qo). For an Ohmic bath this predicts a low-
temperature enhancement varying as vo( T/cu )o2.

Although this term is also proportional to T2 it is
down by order (e/duo)z relative to our result (17).
Such terms were ignored from the start of our calcula-
tion since truncating to the two-state system forced us
to work in the limit e, T(( ~b ~ ~,. Consequently it
is not possible for us to determine whether a term of
the form uo( T/ c0)0z would actually be present if
higher-order corrections were included. We can only
conclude that (17) is expected to give the correct
low-temperature enhancement to leading order in
e, T(( cub
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