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The dynamics of an asymmetric double-well system coupled to a heat bath is studied at low tem-
peratures where transitions between the wells involve quantum tunneling. The time evolution of
the occupation probabilities of the wells is calculated by means of instanton techniques. For a wide
range of parameters incoherent relaxation is found at a rate whose dependence both on tempera-
ture and bias is nonanalytic, in general.
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A great variety of phenomena in physical and chem-
ical sciences are caused by transitions between states
that would be stable if there were no thermal and
quantal fluctuations. Frequently, the basic physics of
such systems can be described by the model of a
Brownian particle of mass m moving in a multistable
potential V(q). The quantity of interest is then the
rate for transitions between adjacent potential wells.
At very low temperatures these transitions are caused
by quantum mechanical tunneling. Recently, Caldeira
and Leggett' have shown that tunneling rates are sen-
sitively affected by dissipation leading to a strong
suppression of the decay rate at T=0. Furthermore,
for T) 0, the temperature dependence of the rate
changes drastically in the presence of dissipation. 2

In this Letter we restrict attention to a slightly asym-
metric double-well system where the depths of the po-
tential minima at qo/2 differ by a small bias energy
fo(Fig. 1).. The barrier between the two wells is as-
sumed to be large so that the tunneling frequency bo
of the undamped and unbiased system is much smaller
than the frequency coo= [ V"(+qo/2)/m]' 2 of small
oscillations in each well. The coupling of the tunnel-
ing coordinate to its environment gives rise to dissipa-
tion. Specifically, we consider an environmental coup-
ling leading in the classical limit to the familiar equa-
tion of motion mq'+qq+tl V/Bq=0. This case of
Ohmic dissipation presents many special features3 4

and it arises, e.g. , in the phenomenological description
of Josephson systems. Thus our results should apply
to the tunneling of the magnetic flux embraced by a
SQUID ring, 5 a problem which has attracted a great
deal of theoretical and experimental interest recently.
Furthermore, for the range of parameters where the
relaxation is exponential in time (see below), the
results can also be used to describe the motion of par-
ticles in distorted periodic potentials with Ohmic dissi-
pation.

We examine the dynamics of a system which at time
t = 0 starts out, say, from the left-hand well. This may
be the upper or lower well, according as a- is positive
or negative. At later times the system is then found
again in the left-hand well with probability P (t) or

it occupies the right-hand well with probability
P+ (t) = 1 —P (t). The dynamics of tunneling
transitions is characterized conveniently by P ( t)
=P (t) —P+ (t). In the absence of dissipation,
this quantity shows oscillatory behavior P(t) =o-2/
b, z+(60/5 )cos(ht, t) where ht, =(4 +o. )' is the
tunneling frequency of the undamped system with bias
to-. For zero bias, the influence of Ohmic dissipation
on P(t) has been studied in detail by Chakravarty and
Leggett. 4 In terms of the dimensionless dissipation
coefficient

n = 71q02/2mb,

they find at zero temperature damped oscillations of
P (t) for 0 ( n & —,

' and incoherent relaxation for
—,
' & n & 1. For o. ) 1, tunneling transitions are

suppressed completely at zero temperature3 while for
finite temperatures P ( t) relaxes exponentially at a rate
proportional to T '. Our calculation reproduces
these predictions as special cases.
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FIG. 1. The biased double well.
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We restrict attention to the region where both kB T
andtt~o.

~
are small compared totp)p. Then the double

well behaves effectively like a biased two-state system,
and the dynamics of P(t) depends essentially on three
dimensionless parameters: ka T/itch p, o/Ap and n.
Since Ap « 0)p, all parameters may vary from 0 to
values much larger than 1. The calculation of P(t) is
based on functional integral techniques which are con-
venient because they allow the inclusion of dissipation
as a nonlocal term (influence functional) in the effec-
tive action. 7 8 In the functional integral expression for

I

P ( t), tunneling transitions between the wells are relat-
ed to the contribution of instanton (or "kink") trajec-
tories connecting the ground states in the two wells.
In the dissipative case the instanton interactions must
be treated carefully. An appropriate method, which is
an extension of the approach developed recently by
Zinn-Justin9 for undamped systems, will be presented
here.

Let w (q, 0) be the probability distribution of the
coordinate of the Brownian particle measured at t =0.
Then the probability distribution w(q, t) at time t may
be written as a double functional integral7 8

w(q~, t) = „D[q] D[ q']e xp(it ' [S[ql —S[q'] ) +il 'C)[q, q]) w(q;, 0), (2)

where the integral is over all paths q(7), q'(r), 0 (r ~ t with q(0) = q'(0) = q;, q(t) = q'(t) = qf, and where q;
is integrated over;

& [q] =
~ d~ ( —,

' mq' —V(q) ) (3)

is the action of an undamped particle, and 4&[q, q'l is the Feynman-Vernon influence functional7 8 describing the
frictional influence of the environment. For Ohmic dissipation @[q, q ] can be written as

pT
4[qq'] =& d~& ds [q(r) —q '(~) ) (0(~—s) q(s) —0"(r —s)q '(s) ), (4)

where'o

itPp)o . m7 1.0(~) = ~in sinh + iq-
n tP

Now, let w(q, 0) be centered around —qp/2 which
is the case for an ensemble of systems initially in the
left-hand well. Since the probability distribution
w (q, t) will be centered around + qo/2 and —qo/2, it is
sufficient to consider the occupation probabilities
P+ (t) =J dq w(q, t), P (t)=1—P+ (t) of the
two wells. Por kBT « tp)o, ~o-~ && 0)o, excitations in
either well are negligible, and the contribution of the
functional integral (2) to P+ (t) arises from multi-
instanton paths which start at —qo/2, traverse the po-
tential barrier possibly several times, and end at
+ qp/2.

The path probability of a multi-instanton trajectory
can be decomposed into a product of various factors: a
factor ih/2 for every single instanton, an interaction
factor for every pair of instantons, and a bias factor for
every sojourn in the right-hand well. Because of the

I

dissipative self-interaction of an instanton, b, is dimin-
ished as compared to the tunneling frequency Ao of an
undamped system with zero bias. To determine the
instanton-pair interaction factors and the bias factors
we may approximate the paths by

2n+1
q(~) = X ( 1)J+ qo5(r —t, ),

j=1
2m+1

q '(s) = X qph(s —t„').
k=1

The flip times t& and tk are the collective coordinates
of the problem. P+ (t) is obtained by integration of
the multi-instanton path probability over the region0(tl(. . . & t2n+l t, 0 tl «. . . t2m+1
and summing over all positive numbers n and m.

Following Chakravarty and Leggett, 4 we rewrite this
result in the form of the contribution of a single func-
tional integral by embedding the flip times tj, tk into a
single interval [O, t]. This transformation is straight-
forward but tedious, and it leads for P ( t) = 1
—2P+ (t) to the formula

fP(t) = X ( —1)"b, "„dt2„~l dt2„ l J dtl I'2„(tl, . . . , t2„),
n=o

where

F,„=e p —ESxJ coe(ceo)" '2 " X coe cioo —o gelx, exp 2 AjeLlfx,
j=1 Ig. = +1) j=1 j,k=1

and where ~&= t2&
—

t2& l. The functions SJ and Ajk are given by"

si = s(rg),

Ajk —S(t2k tgj l) + S(t2k —l tg~) S(t2k t2j) ~(t2k —l t2j —l)~

1606



VOLUME 54, NUMBER 15 PHYSICAL REVIEW LETTERS 15 APRIL 1985

where S(~) = 2n in[n. 'tpmp sinh(m~/i| p) ].
In (7) the 2n instantons are arranged in pairs of neighboring instantons which flip at times t2&

Pairs may be looked uPon as "bounces" of length 7J. For each bounce, (7) contains a factor of the form
w(v) =exp[ —S(r)]cos(o.v —@), where the phase @ depends on the other bounces. Hence, very long bounces
«e suppressed. At zero temperature, where the bounce length is largest, it can be estimated as'2 ~ = 2n/l~l. It
will be shown below self-consistently that for a wide range of parameters the relaxation rate I is small compared
with r ' On this assumption the bounces form a "dilute gas, " and the exponential factor under the summation
sign may be set equal to unity. In this approximation'3 we then find

+2 = exp —X S& cos(7m —a.7 ~) cos(7m)cos(or&). ,
g=1 j=2

and (6) can now be summed explicitly by means of an appropriate extension of Zinn-Justin's method9 to yield

,X+ i sin(m. n) [J+ (A. ) —J (X) ]P(t) = —
i e

2vri —I —~ X X+ cos(mn) [J (&)+J (&)] '

where

(10)

t

8pcopJ~
2 cop 2 tr

1 2A
I (n —tP(X +i a)/2m)-

r(1 —n —fp(Z +la.)/2m)

(13)

This is the central result of our work.
Let us first study the high-temperature approximation of (11) which is obtained by substituting J~ (0) for

J q (A. ). Then the integrand in (11) has two poles at A, =0 and A. = I' where
t

1 a' ~p~p „ lr (n+ m p~/ 2~) l'

Closing the integration contour in the right-hand half-plane we find

P (t) = —tanh(tpo. /2) + [1+tanh(iI'pa. /2) ]exp( —r t). (14)

This result describes incoherent relaxation to equilibri-
um with the tunneling rate I . The expression (13) for
the rate can be substantiated from an "imaginary-
time" calculation'p based on the methods of Refs. 1

and 2.
To study the range of validity of (13) and (14), we

first examine the limit a- = 0 where (13) reduces to

I (n) mkaT
2 Qjp I'(n+ i ) Scop

(i5)

Hence, for n & 1, kpi'/2n is of order h2/cup2 « 1 for
all temperatures, and the high-temperature approxima-
tion is valid down to T= 0. On the other hand, in the
limit T= 0, we obtain

n b, ' 1

2 o)p r(2n) cop

Consequently, even for very small la-l, 2nI /lo-l is al-
ways of order A2/cop2 in the region n & 1, so that the di-
lute bounce-gas approximation holds. This indicates,
as can be shown more precisely, that in the region
n & 1 the results (13) and (14) hold for all Ala. l and
ka T small compared with fcup. The limiting formulas
(15) and (16) for the tunneling rate I have previously
been derived by Chakravarty and Leggett and by

J, (~)
= ——,

' 5'cop ' I (1—2n ) ( —X + ia)2-(i7)
Hence, in the presence of a bias, tpl /2nneed not.
necessarily be small to be permitted to disregard the A.

dependence of J~(A. ); rather, a small I'/la.
l is suffi-

cient. As a consequence of this fact one finds that
(13), (14), and (16) also hold in the region —,

' & n & 1

for all temperatures provided that the bias is not too
small. The minimal bias required vanishes for large
enough temperatures and is largest at T= 0 where

1/2(1 —~)
l~l » ~p

I 2n Gap

should hold. For very small la. l the relaxation of P(t)
is nonexponential at zero temperature.

! Weiss et al. ,
' respectively. Note that at zero tem-

perature P(t) =2exp( —I' t) —1 if the particle starts
out from the upper well (o- & 0) and P(t) =—1 if it
starts from the lower well (a. & 0). Thus, at T= 0 and
for n & 1 there are only transitions from the upper to
the lower well.

At zero temperature the functions J ~ (A. ) read
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In the region of parameters not covered by the high-temperature approximation (14), the formula (11) cannot
be evaluated in closed form, except for the case T =0 and a-=0 where we find for n & 1 by virtue of (17)

P(t) = E,i, 1( —y"' '), (19)

where E„(z) is the Mittag-Leffler function, '4 and where

y = A, trt —= [cos(urn)I (1 —2a) ]'l ' (5oioio) li' (20)

The results of Chakravarty and Leggett are now readi-
I

ly obtained from the known properties of the Mittag-
Leffler function. t4 For o. & —,

' the function (19) has a
damped oscillatory part and an incoherent part with a
power-law decay. For —,

' ( n ( 1 the function decays
mon tonically.

It should be noted that the dilute bounce-gas ap-
proximation made to derive (19) is not strictly valid
for n ( 1, T = 0, o- = 0. However, the deviation
AP(t) of P(t) from (19) is very small. This suggests
that (11) gives a very reasonable approximation for
P(t) in the whole range of parameters.

The most likely system for an experimental test of
these predictions is a SQUID, s in which the flux
through the ring plays the role of the coordinate. The
bias may be controlled by means of an external flux
and P(t) can be determined from the observation of
fluxoid quantum transitions.

At the time of writing of this Letter we learned from
M. Fisher and A. Dorsey (following Letter) that they
have obtained results similar to the ones discussed
here.

&A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211
(1981), and Ann. Phys. (N.Y.) 149, 374 (1983), and 153,
445(E) (1984).

2H. Grabert, U. %eiss, and P. Hanggi, Phys. Rev. Lett.
52, 2193 (1984); H. Grabert and U. Weiss, Z. Phys. B 56,
171 (1984).

3S. Chakravarty, Phys. Rev. Lett. 49, 681 (1982); A. J.
Bray and M. A. Moore, Phys. Rev. Lett. 49, 1545 (1982);
V. Hakim, A. Muramatsu, and F. Guinea, Phys. Rev. 8 30,
464 (1984).

4S. Chakravarty and A. J. Leggett, Phys. Rev. Lett. 52, 5
(1984).

5See, e.g. , R. de Bruyn Ouboter, Physica (Utrecht) 126B,
423 (1984), and references therein.

6U. Weiss and H. Grabert, to be published.
7R. P. Feynman and F. L. Vernon, Ann. Phys. (N.Y.) 24,

118 (1963).
SA. Schmid, J. Low Temp. Phys. 49, 609 (1982); A. O.

Caldeira and A. J. Leggett, Physica (Utrecht) 121A, 587
(1983); V. Ambegaokar, in Percolation, Localization, and Su
perconductivity, NATO Advanced Studies Institute, Vol. 109,
edited by A. M. Goldman and S. A. Wolf (Plenum, New
York, 1984).

9J. Zinn-Justin, Nucl. Phys. B 218, 333 (1983).
ioThis expression is the limit as ~, t ~ of the expres-

sions given in Eqs. (12) and (13) of Ref. 4.
ttAs compared to Ref. 4 we have absorbed a factor qo/nt

into the definitions of S& and Aik. Further, it should be not-
ed that all except the nearest-neighbor phase factors X&k de-
fined in Eq. (6c) of Ref. 4 vanish for strictly Ohmic dissipa-
tion, i.e. , in the limit oi, t ~ of Eq. (12) in Ref. 4.

i U. %eis, P. Riseborough, P. Hanggi, and H. Grabert,
Phys. Lett. 104A, 10, 492(E) (1984).

The dilute bounce-gas approximation made here differs
from the more familiar dilute instanton-gas approximation
by the fact that the intrabounce interaction is fully taken into
account.

t4A. Erdelyi, Higher Transcendental Functions (McGraw
Hill, New York, 1955) Vol. 3.

1608


