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Levinson's Theorem and the Nodes of Zero-Energy Wave Functions
for Potentials with Repulsive Coulomb Tails
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Levinson's theorem relation phase shifts and bound states, developed for a short-range potential
V,&, is extended to scattering by V,h+ Vc, where Vc is a repulsive Coulomb potential. The
subtleties associated with L = 0, E = 0 bound states for Vsh alone are not present for V,h+ Vc. In-
formation is also obtained on the relation between the nodal structure of the zero-incident-energy
wave function and the number of bound states; some extensions to scattering by a compound target
are possible.

PACS numbers: 03.80.+r

Levinson's theorem, which provides the only gen-
erally valid relation between phase shifts and bound
states, is one of the classic results of scattering theory.
Recall that for scattering by a short-range potential
V»(r), where r2V»(r) —0 for r —0 and r3 V»(r) —0
as r —~, the theorem states that 5L (0) —5L (~ )
=NL n, where 51 (k) is the phase shift for the partial
wave of angular momentum I, for wave number k and
NL is the number of bound states (all of which have
normalizable wave functions) of the given L. [We ig-
nore for the moment the possibility of zero-energy
(i.e. , E =0) bound states. ] We provide here a sketch
of the extension of that fundamental theorem to in-
clude the very important case of potentials of the form
V»(r) + Vc(r), where Vc(r) = Z, Z2e /r is a repulsive
Coulomb potential; our extension applies to the differ-
ences of the phases with and without V,h.

The usual proof of the theorem for V,h alone is
based on the analytic properties of the scattering am-
plitude in momentum space and our extension is given
in that form. We very recently presented a new proof
of the theorem for V,h.

' The proof, which proceeds in
coordinate space and is based on a minimum principle
for the scattering length AL, provides new insights and
a new result, information on the nodal structure of the
E = 0 wave function uL (r) for scattering by V,„. This
nodal-structure result is also extended here to include
potentials of the form V,h+ Vc. We remark that a
knowledge of the nodal structure of ur (r), the E =0
limit of the scattering wave function wL (k, r), provides
a very useful check on numerical calculations of this
function. Furthermore, when combined with a nodal
definition of 5L (k)—a definition in terms of the nodal
points of the free wave function and wl (k, r)—a
knowledge of the nodal structure enables one to give
an absolute definition of 5L (0) and thereby of 5I (k).
Most significantly, such nodal-structure analyses can
be extended to a class of multiparticle single-channel
scattering problems where they may be applied, in a
useful way, independently of the validity of Levinson's
theorem. One frequently introduces models of the
multiparticle scattering problem based on the existence

of an effective potential seen by each particle; analysis
of the nodal structure of the model wave function pro-
vides explicit information which can be of considerable
physical interest.

Levinson's theorem is clearly invalid for scattering
by Vc(r) or by a hard-core potential V„,(r). Thus, Vc
can support no bound states and its phase shift, con-
ventionally denoted by o-L (k), has the values
o-L(0) =~ and o-L, (~) =0. Similarly, V„, can sup-
port no bound states and its phase shift is 0 at k = 0
and —~ at k = ~. But consider scattering by
Vh, + V,h. It is then known that the phase shift de-
fined as the difference between the phase shifts associ-
ated with Vh, + V,h and with Vh, alone does satisfy
Levinson's theorem. The corresponding result is
transparently valid for the sum of two short-range po-
tentials; one need merely apply Levinson's theorem to
the sum of the two potentials and to one of them, and
take the difference. These results suggest that the
difference 5L (k) = AL (k) —a-L (k) between the phase
shifts associated with Vc+ V,h and with Vc alone
might satisfy Levison's theorem, and we will show that
this is indeed the case. [Parenthetically, we note that
5L(~) = 0 for V,h, so that Levinson's theorem for V,„
can be written as 51 (0) =NI m. When possible, the
elimination of any reference to 5L (~) can be a great
advantage, as, for example, in an attempt to extend
any results to scattering by a compound system. ]

Following the standard procedure we define the
Jost function &L(k) for V,h+ Vc as the Wronskian
W'(fL, @L), where fL(k, r) is the Jost solution, behav-
ing as exp(ikr —

q in2kr ) for r —~; here q = (ka)
and a =62/mZ&Z2e2, with m the reduced mass. The
regular analytic solution @I (k, r) is defined by the
boundary condition QL (k, r) —r L + ', r —0. The
analyticity of Mz (k) in the upper-half k plane can be
proven by straightforward generalization of th~ stand-
ard proof applicable for V,h, with the restrictions on
the behavior of V,h at r —0 and at r —~ unchanged.
[That proof required the development of relatively
simple bounds on the free wave functions jL (kr) and
nL(kr), for k complex. Those bounds, and bounds on
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the standard Coulombic functions I'L and GL, follow
easily from a knowledge of the forms of the functions
at r —0 and r —~.] Though division by the rather
simple V = 0 Jost function is often not explicitly
remarked on, it is important to recognize that in the
standard derivation of Levinson's theorem for V» one
deals with the ratio of two Jost functions, one associat-
ed with V = V» and the other V = 0. A k ' singulari-
ty present in each Jost function at k = 0 then disap-
pears from the ratio. Similarly, the results indicated
above for the sum of two short-range potentials rela-
tive to one and for Vh, + V» vs Vh, can be based on a
ratio of Jost functions. The essential point is that for
real positive k the argument of the Jost function for a
given v is the negative of the phase shift for that V, so
that the argument of the ratio of Jost functions is the
difference 5I (k), often the physically interesting entity.
The above considerations suggest that in the case of
present interest one should introduce the ratio
RL (k) =~L (k)/„g L (k), where ~ Lc (k) is the Jost
function for Vc alone. An explicit expression for
MLc (k) is known. 3 Here we need only note that this
function is analytic and has no zeros in the upper-
half k plane, and has an essential singularity at k =0,
and for positive real k has the phase —o-L ( k)

,

= —argI'(L +I +i') With . bL(k) defined as the
phase shift associated with V,h+ Vc, the argument of
RI.(k) is —[51.(k) —a.

L, (k)] = —51.(k), the phase
shift that we wish to study.

We now subject RL (k) to the standard analysis, that
is, we integrate its logarithmic derivative over a con-
tour in the complex k plane. This contour consists of
the real axis, but passes over the origin, and an infinite
semicircle in the upper-half plane. Along with the
fundamental analyticity property, and the identifica-
tion of the phase of RI (k) as —5L (k), the theorem
makes use of the following additional properties, fami-
liar from a study of the analogous short-range case: (i)
RL(k) =RL( —k), k real. (ii) The zeros of RL(k) in
the upper-half plane lie on the imaginary axis, are sim-
ple, and correspond to bound states in V,„+Vc. (iii)
Rq (k) —1 for k —~ in the upper-half plane and
remains finite as k approaches the real axis from
above. If there is an E=0 bound state the rate at
which RL (k) vanishes for k —0 must be determined
and here the presence of Vc plays a particularly in-
teresting role. Thus, in analogy to Newton's treat-
ment of V», one readily shows, starting from
RL (k) = W(fL, , @L ) M L (k) and RL (0) = 0, that, as
k —0,

dRI (k)/dk —bL k JI QL2 (O, r) dr,

where bL is a nonvanishing constant. Since @L(O,r),
the E = 0 bound-state wave function, has the asymp-
totic form r' 4exp[ —(8r/a)' ], the integral (over the
range 0 to ~) is finite, and of course nonvanishing,

for all L. It follows that RL (k) —PI k for k —0, with
Pl aO. In this regard the V,h+ Vc problem is simpler
than the V,„problem. In the latter case, E = Q

bound-state wave functions behave as r ~ for r —~
and are therefore normalizable only for L & 0. There-
fore, the analog of Eq. (1) fails to determine the
behavior of the L = 0 Jost function for k —0. Further
analysis4 shows, in fact, that it behaves as k, not k2, so
that the contribution to the contour integral from the
neighborhood of k = 0 differs for L = 0 and L & Q.

Thus, the precise form of the theorem for V» is
5I (0) = (NI + —,'(L )n, w.here NI is the number of
bound states, including E = 0 bound states if and only
if they are normalizable, where (L = 0 for L & 0, and
where $0= 0 if there is no E = 0, L = 0 bound state
and go ——1 if there is. (An L =0, E =0 state is only
"half bound. " ) For V»+ Vc, on the other hand, we
have simply 5L (0) = NLRB. .

We turn now to a discussion of the nodal structure
of uL(r) for V,h+ Vc. The nodal structure of the
eigenfunction of a discrete state, the bound-state wave
function in the present context, is a subject on which
there is a large body of literature going back to the
work of Sturm and Liouville (SL). The SL studies are
based on a minimum principle for the eigenvalue
which characterizes the nth state, its energy E„. Corre-
spondingly, the information gained on the nodal struc-
ture of uI (r) for V,„was based on a minimum princi-
ple for the parameter which characterizes ul. (r),
namely, Al . Now one may readily extend the
minimum principle to the AL associated with Vc+ V».
Under the assumption, for simplicity, that V» van-
ishes exponentially for r —~, uI (r) behaves asymp-
totically as a linear combination of Coulombic (rather
than free) and (decreasing) irregular solutions and AL
is the relative amplitude of these solutions. The trial
E = 0 scattering function has a similar asymptotic
form. Use of the minimum principle in the manner
described earlier' leads to the conclusion that uI (r)
has nL nodes, where nL is the number of negative-
energy bound states in the potential V»+ Vc. To con-
vert this result to a statement concerning 5L(0), we
adopt the nodal definition of b, L (k) and make use of
the known threshold behavior of 5L, (k). The latter is
obtained from the effective-range expansion

KL(k') ——A, '+ ,'r, k'+. . ., k —0—.

We define KL, (k )/k2L +'Il (q) as C2(q) cot5L (k)
+2q[Rep(iq) —In7i], where p(iq) is the digamma
function and

2mn
exp(2m') —1

If there is no E = 0 bound state one finds that
5L(0) =nLm=NI7r If an E=0 b. ound state exists
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then IAg I
= ~ and cot5L (k) diverges in the E =0 lim-

it, for all L, because of the exponential decay of the
Coulomb penetration factor appearing in the
effective-range function LL. The leading term in the
effective-range expansion is now proportional to k,
and by careful investigation of this term one finds that
5r. (0) = (nI +1)m =NI n. , in agreement with our pre-
viously derived statement of Levinson's theorem for
V,h+ VC.

We note that the value of 5(0) (mode ) follows im-
mediately from effective-range theory [more explicit-
ly, from the fact that the effective-range function
KL (k2) is analytic in k2 near k2=0] both for V,„and
for V,h+ Vc. Thus, for AI finite or infinite, we find

+ Vc for all L and for V,h for I- ) 0 that
cot5L(0) =~ and therefore that 5I (0)(mode) =0;
for V,h and L =0, the argument is the same if AI is
finite, but if ~AL ~

= ~ one finds that cot5I (0) = 0 and
therefore that 5o(0) (mode) = ,' n—For. .V,h plus an at
tractive Coulomb potential effective-range theory was
used to show that 5I (0)(mode) = p, (~)m, where
p, (n) is the quantum defect, defined by writing the nth
energy level as E„=—(t2/2m )/a [n —p, (n)]2. Be-
cause of the appearance of infinitely many bound
states the two approaches developed here for the
derivation of the theorems of the Levinson type are
not directly applicable to the V,h plus attractive
Coulomb case. However, one can trace the change in
the number of nodes introduced by the existence of
V,h and relate that to the number of additional bound
states due to this potential. This leads to the relation
5I (0) = p, (~)nas the a. nalog of Levinson's theorem,
with the value of the largest integer contained in

p, (~ ) representing the number of additional bound
states due to V,„. The fact that 5L (0)/m. need not be
an integer may be traced to the behavior of the

Coulomb penetration factor in the zero-energy limit; it
is exponentially vanishing in the repulsive Coulomb
case but remains finite for Vc attractive.

Turning now to scattering by a compound target, we
note that SL theory for the nodal structure of a
bound-state wave function is not limited to a particle
in a potential, though the information obtainable on a
many-body wave function is not always as complete as
for a one-body wave function. We previously extend-
ed the many-body SL nodal theory to the nodal struc-
ture of the wave function for a particle incident with
zero energy on a compound system when no Coulomb
tail is present. The further extension when there is a
repulsive tail is trivial, since a minimum principle for
AI for that case is known. (When applied to proton or
neutron scattering by very heavy nuclei the theorem
might well be useless since there wi11 be very many
states of the projectile plus target system lying below
the energy level of the target elsewhere.
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