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It is shown that the three-cocycle arises when a representation of a transformation group is
nonassociative, so that the Jacobi identity fails. A physical setting is given: When the translation
group in the presence of a magnetic monopole is represented by gauge-invariant operators, a (trivi-
al) three-cocycle occurs. Insisting that finite translations be associative leads to Dirac s monopole
quantization condition. Attention is called to the possible relevance of three-cocycles in the quark
model's U(6) S U(6) algebra.
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A unified mathematical point of view towards vari-
ous aspects of an anomalous' (i.e. , apparently incon-
sistent) gauge theory has now been established2: Both
the anomalous divergence of the gauge current'3 and
the anomalous commutators of generators of local
gauge transformations4 are, respectively, the first and
second (infinitesimal) cocycles. In this Letter I ex-
plain the function of a three-cocycle in group-
representation theory, and exhibit physical systems
that make use of it.

Consider representing the action of a transformation
group G on quantities W depending on a variable q,
which transforms under G to qg, where g is a member

of G. We suppose that the action of the representation
U(g) involves an operator Mt, which enters as

The operators Mt do not necessarily follow the group
composition law, gtg2 = gt2, rather they can satisfy

~1(q;gt) &1(q";g2)

~2(q, gt, g2)+1 (q;g12).

Here sf 2 is another operator, which commutes and as-
sociates with sent. Finally, we assume that the compo-
sition law for 41 is not associative: Different ways of
associating a triple product differ by a phase, as

l&1(q;gt)&t(q ',g2)]A 1(q ",g3) =exP[i~3(q;gt, g2, g3)141(q;gt) [Mt(q ',g2)&t(q ";g3)1 (3)

In order that (3) be consistent with nonvanishing n3, that phase must satisfy a certain condition. To find the
condition, we multiply (3) on the right by +1(q '23;g4) and repeatedly use (2) and (3) to bring the association of
the four factors in both elements of the equality into the same form. We then find that a3 must satisfy the three-
cocycle condition:

g' .o3('q g2 g3 g4) o'3( q g12 g3 g4) + ~3(q gt g23 g4) ~3(q gl g2 F34) + ~3(q gl g2 g3) = 0(mod2'tr).

A three-cocycle is trivial if it can be written as

~3('q g1 g2 g3) = ~ «;g2 g3) ~(q g12 g3) + to(q gt g23) ~( I gt g2) ~

(4)

(5)

where to is an arbitrary quantity. When (5) holds, n3 may be removed by redefinition of ~2. It is clear that if M2
is a number rather than an operator, 0.3 is trivial. Moreover, Mt cannot be a well-defined linear operator —these
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always associate.
These formulas are equivalent to

U(F1) U(+2)+(9) ~2(Q Rl R2) (+12)+(~)
and

(6)

(7)

The exponential is well defined by its power series.
Also, we define the lowest-order quantities

1M 2(q;gi, g2) = I+ zfg g (—q) +. . . ,

1
~3(q;~i, ~2 +3) =

3, ~g, g,g, (q) +

[ U(Rl) U(R2) ] U(83)+(q) = exp[i~3(ii Rl R2 R3) ] U(Fl) [ U(R2) U(F3) ]+(q)
which together with (1) define a "nonassociative
representation. "

Next, we examine the implication of all this for in-
finitesimal, algebraic relations. The group element is
represented by g= exp(0'T ), where 0 is the infini-
tesimal parameter, and T' is an element of the Lie
algebra satisfying the commutation relation

[ T', Tb] =f.„T' (8)
The commutator of two generators follows from (6):

(Summation over repeated indices is implied. )
Although the representation of the group is nonassoci-
ative, we assume that it is power associative, i.e., n-

fold products of a given quantity are uniquely defined.
This allows the expression of representatives of finite
group elements U(g) in terms of infinitesimal genera-
tors Gg —= O'G, :

U(g) = exp Gg = 1+ Gg+. . . .

[G,, G, ]= G .. .+M, ,
(g]X/2) = f~b g&HZ.

(12)

Multiplication of generators is not associative, since
(7) implies that

( Gg, Gg, ) Gg, = Gg, ( Gg, Gg, ) + ~g, g,g, , (13)

which in turn has the consequence that the Jacobi
identity fails:

[[Gg, , Gg, ],Gg, ] + [[Gg, , Gg, ],Gg ] + [[Gg, , Gg ],Gg ] = nag g g l. (14)

[r', r&] = 0, [r' pj] = if 5g [p' p ] = 0 (15)
With these one can build a trivial representation of the
translation group, representing translations by the ex-
ponential of p:

exp[(i/ii)a p]W(r) =W(r+a).

(Here, [8&0283] means antisymmetrization in all three
quantities. )

In summary, I have shown that a three-cocycle
arises in nonassociative group representations as in
(7). For power-associative representations, one may
define infinitesimal generators which, however, do not
satisfy the group's Lie algebra (8); rather, there is an
operator extension, as in (12). Finally, the hallmark
of all this is that the Jacobi identity is not valid, as in
(14).

I now give a physical realization of the above.
Although physical cocycles arose first in topologically
interesting quantum field theories, 2 5 particularly
gauge theories, the example that I offer is drawn from
ordinary quantum mechanics involving a magnetic
monopole. (I shall mention a possible field-theoretic
application later. )

In quantum mechanics one deals with momentum
and position operators p', r' which satisfy Heisenberg' s
commutation relations

'7 B=4m.g5(r —ro), (17)

then p is not gauge invariant; rather, it is related to the
gauge-invariant velocity operator v by a vector poten-
tial A(r) that cannot be globally defined:

p=v+ eA(r), VxA=B.
(The mass of the particle and the velocity of light are
set equal to unity. )

Since v satisfies the same commutation relation with
r as does p,

[r', v ~] = itBg,

a gauge-invariant representation of translations may be
built v ith the operator

U(a) =exp[(i/t)a v]. (20)

However, the velocity components do not commute:

[u', v i] = ieg eijkgk (21)

I

However, when the particle described by these vari-
ables carries charge e and moves in the field B of a
magnetic monopole with strength g, located at ro,
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and the Jacobi identify fails6:

[[v', v ],v']+ [[v,v ],v']+ [[v', v'], v ] = —et vi B= —4megt25(r —ro). (22)

Both mathematicians and physicists mostly ignore
this violation of the Jacobi identity. The former work
on a manifold with one point —the location of the
monopole —excluded; the latter observe that wave
functions of interest vanish at the monopole. But we
retain the full form (22) and recognize that an infini-
tesimal three-cocycle is encountered. Equation (12)
holds with

~ii, ii,
= ( —ie/t)a, xa, B, (23)

and for (14) we find

nle, ii,e, l
= (47reg/t)atx a2 a35(r —ro). (24)

I

It remains to understand why the representatives of
finite translations (20) do not associate. Before

proceeding, let me discuss the numerical coefficient in
(22) and (24). According to Dirac, a consistent quan-
tum dynamics for the monopole requires that eg be

quantized in integer units of t/2. Hence, the coeffi-
cient of the infinitesimal three-cocycle is in fact 2mn

For the moment, let us ignore this, and remain with

an arbitrary value for eg.
To recognize the nonassociativity, let us determine

M~(r;a). We may write (1) as

U(a)+(r) =exp[(i/t)a v]%'(r) =exp[(i/t)a v]exp[( —i/t)a p] Ii(r+ a).
The product of the two operators is easily evaluated; one finds7

pi+ 4
&q(r;a) = exp[( —ie/t)J ds A(s) ],

r

where the line integral is along the straight line joining r and r+ a. Furthermore, from (2) we see that

~ 2 (r;at, a2) = exp [ —(ie/t )C ],

(25)

(26)

(27)

where &0 is the outward [direction aq x a2) flux through the triangle with vertices (r, r+ at, r+ at+ a2).
Consider now three translations in noncoplanar directions a&, a2, a3, see Fig. 1. Forming the products in (3), we

find for the left-hand side

[~1(r al )+ 1 (r + al a2) ]~1(r+ al + a2'»3) = exp [ ( —ie/t )&0(ABC) ] M~ (r;a~ + a2)~i (r + a& + a2' a3)

= exp ( ( —ie/t ) [4(ABC) + &0 (A CD) ] )~ t (r;ai + a2+ a3)

while the right-hand side becomes

exp [in3(r;at, a2, a3) ]&q (ra~) [Mi (r+ ai,'a2) Mi (r+ at+ a2,'a3) ]

= exp[in3(r;ai, a2, a3) ]&~(r;at) (exp[(ie/t)4(BCD) ] ) Mt(r+ a~, a2+ a3)

= exp [in&(r;a~, a2, a3) ]exp( (ie/t ) [4(BCD) + 4 (ABD) ] ) sf ~ (r;a&+ a2+ a3).

(28a)

(28b)

Each flux is pointing outward and passes through the
triangle specified by the three letters; see Fig. 1. Com-
parison of the two equations (28) shows that the
three-cocycle is —e/t times the total flux emerging
from the tetrahedron formed from the three vectors
a„with one vertex at r. Hence, it is —47reg/t when
the monopole is enclosed and zero otherwise. Shrink-
ing the three vectors to produce the infinitesimal cocy-
cle gives rise to the delta function in (22) and (24).

The three-cocycle is trivial in that it equals, as in
(5), a sum of terms, each of which is the flux through
the appropriate triangle. Nevertheless, if we wish to
represent translations by gauge-invariant operators, we
must remain with the trivial three-cocycle. Of course,
removing it returns the representation to a trivial one
in terms of p, as in (16).

Finally, we observe that Dirac's quantization re-
stores associativity of finite translations since n3 be-

comes —2n. n or zero, and has no effect in the ex-
ponential of (3) and (7). Notwithstanding the associa-
tivity of finite translations, the infinitesimal cocycle
remains as an obstruction to the Jacobi identity be-
cause the infinitesimal generators do not associate. The
argument may be reversed: By demanding that ulti-
mately translations must be associative, we derive
Dirac's quantization of eg. This of course, also insures
that a globally defined vector bundle exists.

A violation of the Jacobi identity is known in quan-
tum field theory. %hen the Schwinger term in the
commutator between time and space components of a
current is a c-number, the Jacobi identity for triple
commutators of spatial current components must fail. s

Since deep-inelastic scattering data indicate that the
Schwinger term is indeed a c-number, 9 consistent with
quark-model calculations, '0 the Jacobi identity for spa-
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FIG. 1. Tetrahedron at point r defined by three transla-
tions a;. The three-cocycle is proportional to the flux out of
the tetrahedron.

tial current components should fail in the quark
model, and this has been verified in perturbative calcu-
lations. " The quark-model algebra of time and space
components of vector and axial vector currents closes
on local U(6) S U(6), ' and the above remarks indi-
cate that a three-cocycle occurs. However, a well-
defined mathematical formulation is problematical,
since the Schwinger term very likely is quadratically
divergent. '
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