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Theory of Spin-Polarized Photoemission from Nonmagnetic Metals: Platinum
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We develop a fully relativistic theory of the process of photoemission from paramagnetic metals
and illustrate it by explicit calculations of the photocurrent and the spin polarization of electrons
photoemitted from a single-crystal platinum sample. Our results are in good agreement with the
available experimental data and indicate that energy-, angle-, and spin-resolved photoemission
spectroscopy is a powerful new probe of the electronic structure even in the case of nonmagnetic
metals.

PACS nombers: 79.6G.Cn, 75.25.+z

Recently, it has become possible to measure the spin
polarization of emitted electrons in an energy- and
angle-resolved photoemission experiment. This is a
significant advance for it opens up the possibility of
studying spin-related features of the electronic struc-
ture in crystalline solids as function of energy and
wave vector. Indeed, such experiments have already
made important contributions to the understanding of
metallic magnetism. Moreover, the pioneering work
of Eyers et al. on Pt suggests that this technique can
provide interesting new information even in the case
of nonmagnetic metals.

That circularly polarized light can induce photoemis-
sion of polarized electrons from an unpolarized target,
on account of the spin-orbit interaction, has been
known for a long time. " However, the measurements
of Eyers et al. is the first energy- and angle-resolved
study of the effect with a crystalline solid as the
emitter. In this Letter we present a fully relativistic
theory of the photoemission process from a nonmag-

netic metal and provide a quantitative interpretation of
their experiments.

We describe the photoemission as a one-step transi-
tion from the states of a semi-infinite solid to the
time-reversed states of low-energy electron diffraction
(LEED). In short our theory is a fully relativistic gen-
eralization of the nonrelativistic theory of Pendry.

We work in the one-electron picture and use atomic
units: e =t =m =1, c =137.036. The crystal poten-
tial is taken to be of the usual "muffin-tin" form with
a step of height Vp at the surface. Such a description
of the surface is adequate for uv photons whose wave-
lengths, X, are large compared with the physical width
of the surface. We also assume that X is much larger
than the Compton wavelength t jmc and the lattice
spacing. Consequently we shall make the dipole ap-
proximation.

Generalizing the approach of Pendry5 we generate
the time-reversed LEED final state ~Qf") from the
wave function at the detector (r~f, v). For this we
take the Dirac spinor:

+ —V, + C'+ C'
2(e+co —Vp+ C )

X„

exp(ik~~ r)6(z —zp),
&+~ —Vp+ C2

where ~ is the frequency of the incident photon, e is the initial energy of the photo-ejected electron, e+~ —Vp is
its kinetic energy and k is its wave vector outside the sample, k~~ is the component of k parallel to the surface, Zp
is the z component of the position vector Rp of the detector, a-, M, o-' are the usual Pauli spin matrices, and the
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Pauli spinors X„are eigenspinors of the spin projection a- n along the direction n, specifying the orientation of the
detector, with eigenvalues v = + 1. In terms of the relativistic LEED Green s function matrix we may write

(rlyf) (r IG (&+co) ~f, v).
A relativistic version of the usual arguments leads to the following expression for the photocurrent:

(2)

I„„(e,k~~;Qt, q, a, n) = ——I m(f v~ G+(e +Ot)h G+(e)b, +G (e+cu) ~fv),
vj

where q is the wave vector of the incident photon, a is
its polarization vector, G (e) is the Green s function of
the Dirac equation which describes the initial states of
the photoemitted elements, and the interaction vertex
5 is given by

t

pie-scattering apporach of Staunton, Gyorffy, and
Weinberger. 8 The relevant scattering properties of
each potential well are described by the partial-wave
scattering amplitudes

4=a. a (4) —~' 't„(e) = ( II2i ) (exp [i 2h„(~) 1
—I )

with the Dirac a in the standard representation.
Evidently, the direction n is determined by the set-

ting of the Mott detectors in the experiment. For a
given arrangement I+ + and I are recorded
separately. The spin-averaged photocurrent is
I = —,

' (I++ + I ) and the polarization along n is

given by

n= (I —I )/(I +I ).
For an efficient theory of the Green's function

G+(a+co), G (e+cu), G(e) we follow the multi-

where 5„(e) are the phases shifts and K is the spin-
regular quantum number of the Dirac equation for
spherically symmetric potentials. For clarity we note
that K= —1, 1, —2, 2, —3, 3 corresponds to l =s
p p d ds/z fs/2 where l is the orbital polar
and j is the total angular momentum quantum
numbers. Multiple scattering between an arbitrary ar-
rangement of scattering centers is described by the
scattering-path matrix r'~, (e) where i and j refer to

t

the sites at R; and R, , respectively, and A stands for
both K and the magnetic quantum number m, It is a
solution of the self-consistency equation

!2I3y [t, A' 5, , hA ~ —G p, (R, ,
—R;,;E)]TA',', (e) =5;...5,p, ,

i2A2

where G, are the real-space relativistic Korringa-Kohn-Rostoker structure constants. For r; = r —R; within the
ith unit cell and i &j, we have

G(r;, r, ;e) = XyA(r, ;e)r~~, (e)y~(r, ;e), (7)
AA'

where p~(r;e) is the "regular" solution of the single-well Dirac equation. In terms of its large- and small-
component radial solutions, g„(r, e) and f„(r, e), respectively, and the usual spin-angular spherical harmonics

xtt'(r), '

y~(r;e) = q „'(r;~) =
g„(r;e)x„'(r)

if„(r;e)x '„(r)

To obtain the simple form of Eq. (7) we have chosen the normalization of g„and f„so that they match smoothly
on to e '

tk 'j& —ih& and e ' t„'j& &
—ih& ~, respectively, at the muffin-tin radius. As usual j& is a spherical

Bessel function, hi is the corresponding Hankel function, and S„denotes the sign of K.
For i =j there is a correction to the right-hand side of Eq. (7). It is given by e' C&z(r;;e)p~(r, ;e) where @z is

the "irregular" solution of the single-well Dirac equation corresponding to the "regular" solution given in Eq. (8).
In the case of a semi-infinite solid of interest here we also need the Green's function for r inside and r', outside

the sample. In that case

G(ro, rf;e) = g QA(ro;e) G „(Ro—Rl;e)v. "„„,p „(r,;e)
.Al/All/

where Ro is a point inside the sample, the detector s position for instance, and P~ is the solution of the free-
particle Dirac equation with large component g„=jl and small component f„=j,

K
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Using the above general results we may evaluate the right-hand side of Eq. (3) to obtain

I&&=I&+I&t Imp gfA (t+Cp)Gg A (Rp R&,6+Cd)TA g (6+t0)Mp p (6, C0)1A A (E)
Ii } IA}

&&My A (E, t0)TA g (6+C0)Gg g (RI Rp, E'+QJ)fA (6+QJ.), (9)

where I, is a surface term, and the atomic term I„arises from the single-site contribution to the site-diagonal part
of the low-energy Green's function. fA ——(f„lPz) and M', is a single-site dipole matrix element. For the rela-

tivistic version of the acceleration formula we find

DA, Jtdr r ' (g„g, +f„f,)[2(e+ C') + t0]t0

V[g„f,(K K 1)+f,g„(K K+1)] ',

where the angular part which contains the polarization
of the incident photons is given by

D, = Jtd2rx~(r)i rX', (r).

In this theory the usual selection rules are K = K or
K+1, and m~+m~'=0. The unconventional form of
the latter is due to the fact that the axis of quantization
in the final state is taken to be in the opposite direction
to that in the initial state. For C ~ the above for-
mulas reduce to those of the nonrelativistic theory as
presented by Durham. Further details will be pub-
lished elsewhere.

We have implemented the calculations implied by
Eq. (9) using the layer methods 9 for the experimental
geometry considered by Eyers et al. : normally in-
cident circularly polarized photons and electrons emit-
ted along the surface normal. In order that our calcu-
lations would correspond to their measurements we
have taken the direction of our "gedanken" detector n

to be also normal to the surface. The one-electron po-
tential function we have used was obtained in a self-
consistent linear combination of muffin-tin orbitals
(LMTO) calculation. We have also calculated fully re-
lativistic energy bands by the layer method. ' As re-
gards the d bands, they agree with our LMTO calcula-
tions to within a few millirydbergs. Since the latter
were solutions of the (linearized) Pauli equation, this
level of agreement is satisfactory. This constitutes an
important check of our programs for the low-energy
states. Furthermore, in the C ~ limit our layer-
method bands agreed essentially exactly with those of
a nonrelativistic Kerringa-Kohn-Rostoker calculation,
as they should. The corresponding photocurrents also
agreed excellently with the results of a separate nonre-
lativistic program. A final test is to calculate the spin
polarization of the photocurrent for linearly polarized
light —this was found to vanish, in accordance with
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FIG. 1. (a) Normal incidence, normal emission spectrum
(hcu = 14 eV) for Pt(111); theory (full line), experiment
(Ref. 3) (dashed line). (b) Energy bands in the A direction.
The dashed curve is the final-state band moved down in en-
ergy by 14 eV. Direct transitions can occur at the intersec-
tions A—E. (c) Electron spin-polarization spectrum for the
right-hand circularly polarized radiation; theory (full line),
experiment (Ref. 3) (dashed line).
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symmetry requirements. For a normal-incidence,
normal-emission experiment the spin polarization
parallel to the surface should be zero even for circular-
ly polarized light. Our calculations obeyed this rule.

In Fig. 1 we compare our theoretical photocurrent
with that obtained by Eyers et al. In view of the fact
that this is the first relativistic calculation of the photo-
current it is of interest that the two high —binding-
energy peaks can be unambiguously assigned to transi-
tions from the spin-orbit —split 44+5 and A6 bands. A
comparison of these peaks with the experimental curve
suggests that this splitting may be too small, and their
relative intensities are somewhat in error. Overall,
however, the peak positions and intensities are in very
satisfactory agreement with the data.

Our central result is the spin polarization +,
= (I++ —I )/(I++ + I ) shown, together with
the experimental data, on the lower panel of Fig. 1.
Our calculation reproduces the approximately 50% ob-
served values quite accurately at low binding energies.
At higher binding energies the agreement is only qual-
itative. Note that the data contain a background of
(presumably) unpolarized secondary electrons, rising
with increasing binding energy. This is, of course, ab-
sent in our calculations, making comparison rather dif-
ficult in this energy range. We attribute the very satis-
factory overall description of the polarization by the
theory to the adequate treatment of the matrix ele-
ments and the hybridization effects, in addition to a
correct account of symmetry.

We now comment on the origin of the spin polariza-
tion of the photocurrent. If we neglect the surface and
assume a direct transition model, it is straightforward
to adapt the atomic calculation of Fano to give a quali-
tative discussion of the present case." Within each
cell we write the initial and final states as Bloch sums:

(rlt) = gbt.",s (k)@L",(r —R„)exp(tk R„),

(rlf ) = X&i'fl(k)@L(fs'(r —R„)exp(ik R„),1

N„L

where R„ is a lattice vector and @tI'P an "atomic" or-
bital of angular momentum L ( = l, m) and spin S. The
spin polarization can be expressed in terms of "atom-
ic" dipole matrix elements linking @~ and @', and of
the band coefficients bL', (k) and btf, (k). We use
Fig. 1 to locate transitions in k space, and our LMTO
band calculation to find the corresponding coefficients
b ' . Then, using the selection rules and assuming

the d p matrix element to be dominant, we find po-
larization of 47%, —37%, 33%, —49%, and 71%,
respectively, for transitions A—E. This estimate agrees
sufficiently well with experiment and with the full cal-
culation for us to conclude that the spin polarization
spectrum is indeed largely determined by the spin
character of the bands, as described by the coefficients
b('f)(k). It is most interesting to obtain such infor-
mation on Pt, but one can easily imagine systems
whose magnetic behavior is controlled by the interplay
of spin-orbit and exchange coupling (e.g. , Ni-Pt com-
pounds and alloys, '2 rare earths, etc.). For such sys-
tems the spin-polarization spectrum will be a vital
probe.

Finally we note that on the basis of the above calcu-
lations we would expect significant polarization effects
in an inverse-photoemission experiment where the fi-
nal (empty) state is a strongly spin-orbit —split state,
even if the polarization of the emitted photon is not
detected. That such empty states exist in Pt is known
from x-ray absorption measurements. Evidently this
phenomenon could be used as a basis for a detector of
the spin polarization of low-energy electron beams.
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