
VOLUME 54, NUMBER 14 PHYSICAL REVIEW LETTERS 8 APRiL 1985

Localization of the Surface Plasmon Polariton Caused by Random Roughness
and its Role in Surface-Enhanced Optical Phenomena
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We show explicitly that in a certain frequency range a surface plasmon polariton (SPP) is local-

ized parallel to the metal surface by the presence of random roughness. By use of a diagrammatic
method developed earlier, a self-consistent equation is derived for the renormalized diffusion coef-
ficient of the SPP. We interpret surface-enhanced phenomena in terms of localized SPP and obtain
an expression for the enhanced intensity near the metal surface. We find important differences in
the enhancement results due to localization; these are consistent with experiments.

PACS numbers: 71.55.Jv, 71.36.+c, 78.20.—e

In recent years, there has been considerable interest
in the study of surface-enhanced optical properties
from rough metal surfaces. ' 3 In particular, surface-
enhanced Raman scattering (SERS) has attracted
maximum attention because the enhancement by as
much as six orders of magnitude in the cross section
has made it possible to detect signals even from mono-
layers of admolecules. '2

The enhancement on a rough surface is believed to
be due to the resonant excitation of the surface
plasmon polariton (SPP) by the incident photon which
has large electromagnetic (em) field amplitude near
the metal surface. ' ~ The presence of surface rough-
ness is necessary because on a smooth surface, the
dispersion curve for the SPP always lies below the pho-
ton line; thus SPP cannot be excited by a photon be-
cause energy and momentum cannot be conserved
simultaneously. 5

We consider here the case of random roughness
which is commonly present in most surface-enhanced
experiments. The SPP excited by the photon is an ex-
tended mode parallel to the smooth metal surface. On
a rough surface, it undergoes elastic scattering as a
result of the spatial fluctuation in the dielectric func-
tion near the (smooth) metal-vacuum interface. This
multiple scattering of the SPP is considered by Arya
and Zeyher6 in the diffusion approximation similar to
that in the conventional transport theory. However, in

the latter case, it is well known that one should include
effects due to interference between scattering waves,
which can become very important. For example, in
the case of an electron in a random potential, such an
interference leads to the Anderson localization; i.e. ,
the renormalized diffusion coefficient for the electron
goes to zero. 7 s Recently, there have been similar dis-
cussions about the localization of the elastic wave in a
disordered medium, 9 and also the existence of a mo-
bility edge has been suggested for the em wave in a
disordered dielectric. '0

In this Letter, we report the results of investigations
of the localization of the SPP due to random rough-
ness. For this we have used the diagrammatic method
for the polariton Green's functions developed earlier
by Arya and Zeyher, 6 and following Ref. 8 we derive a
self-consistent equation for the renormalized diffusion
coefficient D. Using a plasmon-pole approximation for
the metal dielectric function, and for typical values of
the roughness parameters obtained from surface-
enhanced experiments, we show that D goes to zero,
which means that the SPP is localized parallel to the
surface in the presence of random roughness. The lo-
calization of SPP is found to have important effects on
the surface-enhanced phenomena and we discuss how
these effects can be observed in surface-enhanced ex-
periments.

We consider a semi-infinite metal with a local
dielectric function

e(r, 0) = e (z, 0) + [e(Q ) —1][0(((r~~ —z) —0( —z) ],
where e (z, 0 ) = 0 (z) + e (0 )8 ( —z) is the dielectric
function for a plane dielectric-vacuum interface.
g (r

~~ ) gives the height of roughness with respect to the
plane surface z = 0, and r

~~

= (x,y). Let
d&(k~~, k'~~, 0 Iz,z') denote the polariton Green's func-
tion which satisfies the Maxwell equation for the
metal-vacuum system defined by Eq. (1); we have per-
formed a Fourier transformation with respect to r

~~
and

r'~~. For a randomly rough surface, the Green's func-
tion has to be averaged over the distribution of the
profile function (. We assume this distribution to be

I

Gaussian and define averages by (((r~~)) =0 and

(((r~~ )((r ~~ )) = 8 exp( —
Ir~~

—r'~~ I /a ), where ( )
denotes the ensemble average and 5 and a are the
root-mean-square roughness amplitude and transverse
correlation length, respectively.

To calculate average Green's functions, a diagram-
matic expansion has been developed in Ref. 6 and by
Arya, Zeyher, and Maradudin" by using the second
term (describing random roughness) in Eq. (1) as a
perturbation to the unperturbed part etol (z, 0) (corre-
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sponding to a smooth surface). For small roughness, it is shown that these diagrams and the rules to calculate
them are similar to those of the case of an electron in a random potential. Also, in d~ only the arguments z = 0—
and z = 0+ are needed, where 0+ denote a small positive and a small negative quantity, respectively. Further-
more, the roughness coupling between the p-polarized SPP and the s photon, which is small in the frequency range
under consideration, can also be neglected for simplification. Within this approximation, the average p-polariton
Green's function

(dj(kii, kji, 010—,0+)) = (2m) 5(kii —kji)d(i(kii, &)
can be written as'

e; (kii, Q)ej+(kii, O)u(kii, 0)
de(kii, 0) = 20 —0 (kii) —iy

()4 rrc k'(i (v —eva)

(1 —e) [0'—0'+' (k )][0+ ft ' (k ) ]

where e (kii, fl ) =i+ ikiiv(kii, 0)/kii and e+ (kii, I1 ) = z+ ikiivo(kii, I1 )/kii are polarization vectors,
v (kii, 0) = k(i —e (0 ) 0 /c, vo= k(i —02/c2, and Imvo is positive. 0 ~ +-)

(kii ) corresponds to upper and lower
branches of the SPP and are given by the dispersion relation ki2i = k,2(A) = (0/ c) 2e(A) j[e(A)+1]. Since the
upper branch is too high we will assume that only the lower branch is excited by the photon. In Eq. (2), only the
imaginary part of the self-energy S(kii, 0) is retained, i.e., y=lmS(kii, 0). For small roughness, we approxi-
mate this by the first term in the series expansion of S. For kii = k„we thus have

p dk))
y = m a252A20(k„Q)lmJI exp[ ——,

' (k, —ki, )'a ]e+(k„Q) d(kii, 0) e (k„A) =y.,+y„d,'

2
(4)

where y„and y„d correspond to the contributions from the region kii ) 0/c and kii & 0/c, respectively, in the
integration and A = [e(A) —1]02/47rc2 Note th. at for the SPP, kii = k, (A) ) 0/cand vo(kii, II) and a(kii, II)
are real. Thus y„corresponds to the elastic scattering of the SPP into other SPP states. For kii & I1/c, vo(kii, 0)
and n(kii, 0) have a cut in the complex kii plane and de(kii, 0) represents the p-photon mode. Therefore, y„d
denotes scattering of SPP into radiative modes. In a frequency range of interest to us, where the SPP branch is far
away from the photon line, y„d is very small. Therefore, in the following discussion, we neglect contributions
from the region kii & 0/c and assume Eq. (2) to define the SPP Green's function for all kii values. We will, how-
ever, include the radiative losses (y„d) phenomenologically at the end along with other losses, e.g. , these due to
interband scattering in the metal.

As is well known, the essential physics of localization is contained in the calculation of the average two-particle
Green's function, s which for the SPP can be written as6

( dye (kii +, kji +, 0 + [0,0) dki (kii —,kjj, 0 i0, 0+ ) )
= (2m ) 5(kjl —kjj)L (ki&, kji, A, q, ~)e, (kii+, II+)e,+(kji+, 0+ )e„'(kit —,Q)ei (kjf 0) (5)

where kii + = kii + q/2 and 0 + = 0 + cu. It is easy to verify that

d k[[ p d ki'[
L(&,q, ~) =

J J (6)
2rr 2 27r 2

is related to the (em) energy density-density correlation function on the surface. In the localization theory and in
surface-enhancement results, L (0, q, co) is the main quantity which needs to be calculated.

As discussed in Ref. 6, L involves similar diagrams as in the case of an electron in a random potential. There-
fore, we follow the diagrammatic treatment of Ref. 8 to calculate L. Furthermore, the SPP Green's function is
very similar to that of the electron except with a different dispersion relation. Thus in a frequency range where the
coupling of the SPP and the photon is small, it can be easily shown that for small roughness all the approximations
of Ref. 8 are also applicable to our case. For example, we obtain the continuity equation (co 0, q 0)

~ dk dk'
L(A, q, ~) —q J 2

t v(k|1)L(kii, kji, Q, q, ~) =27riN(k ),
(2m. '" 2m- ' (7)

where the second term on the left-hand side is the SPP current density, N(k, ) = (B/27rc2) [e2(Q)+1]/
[e(A) + 1] is the SPP density of states near k„and v(kii) = BA (kii) jBkii is the velocity of the SPP. Using

Eq. (7) and a similar expression for the SPP current density which can be derived (for weak roughness) by follow-
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ing Ref. 8, we obtain

L (0,q, ~) = 27riN(k, )/[co+ iD (q, cu) q2].

In Eq. (8), D(q, co) =2iy„Dp/M(q, co) is the renormalized diffusion coefficient, where Dp=u2(k, )/4y„ is the
bare diffusion coefficient and

d kii e d kij
M(q, ~) =2iy„— AD(k~~) U(k~~, kj~, Q, q, ~)AD(kj~). (9)Nk, " 27r2" 2m2

In Eq. (9), ED(k~~) =q k~~ [d(k~~+, 0+ ) —d (k~~ —,II)], where d(k~~, O) is given by Eq. (2) without polariza-
tion vectors e, and eJ . U(k~~, k~~, Q, q, co) is the sum of all irreducible diagrams in the four-point vertex and in
the lowest-order approximation (ladder summation) M(q, cu) is just given by the first term in Eq. (9) and thus
D(q, o)) =Dp.

Equation (9) can be solved for M (q, cu) following Ref. 8. For y„« 0, the main contribution comes from the
maximal cross diagrams and the contribution of all other diagrams goes to zero in the limit co 0, q Q. The
sum of maximal cross diagrams is calculated from the ladder summation by use of the fact that the SPP, being a
Bose field, has time-reversal symmetry, and we thus have

2y„Up
U(k)), kj), 0, q, ~) = U[ —, (k() —kj) + q), —, (kj( —k() + q), 0, k~~ + kj~, co] = (10)—tee + D (q, eo) (k

~~
+ kj~ )

where Up = —,
'

m a252A2 exp( —k,2a2/2) and we have
used the renormalized diffusion coefficient D instead
of the bare Dp. s Inserting Eq. (10) into (9) and after
some simplification, one finds a simple expression for
M(q, ru), which when used in the defining relation of
D gives the required equation for the renormalized dif-
fusion coefficient as

D(q, o))

=D — k k
~k dk

7rN(k, ) "o 2m D(q, )cu

(11)
In Eq. (11), an upper cutoff k, =1/l has been used

in the integration, where l=2Dp/v(k, ) is the dif-
fusion length. In the limit cu 0, it is easy to show
from Eq. (11) that D (q, cu) ~ —i~, which is the condi-
tion for localization. One can also define the localiza-
tion length ( = [iD (q, cu)/cu]„t/2 p, which from Eq. (11)
is given by

1 = —i (cu+ iyt)(2/Dp+ (k,/mk, )ln(1.+ (2k2).
(12)

In Eq. (12) we have included the damping term yt for
the SPP due to losses by radiation and other interband
scattering in the metal. The localization, however, is
meaningful only if yt (& y„(& Q. Furthermore,
since a sufficient amount of elastic scattering of the
SPP is necessary for building up localization, we also
have the condition that ( & l & 1/k, . From Table I,
where calculated values of these parameters are given
for e(O) =1—au~2/02, we find that these conditions
for localization are satisfied in a reasonable frequency
range close to so, =~~/W2 where radiative losses are
very small. In real metals we have additional losses
due to interband scattering [y;„,= Oe2/2(1+ et),
where et and e2 are real and imaginary parts of e(A)]

TABLE I. Typical parameters calculated as a function of
the SPP frequency. e(0) = 1 —2',2/02, and roughness
parameters a = 1.5co,/c, 8 = 0.5',/c.

ck,/0 y„/n y„,d/ 0 (0/c l 0/c
0.50
0.55
0.60
0.65
0.70
0.75

1.08
1.10
1.13
1.17
1.22
1.28

0.0133
0.0249
0.0450
0.0787
0.1340
0.2231

0.0024
0.0033
0.0042
0.0046
0.0042
0.0028

68.2
40.4
24.7
15.4
9.5
2.3

26.9
14.1
7.6
4.1
2.2
1.2

which are also small at least for noble metals like
silver.

We now discuss how localization effects can be
observed in surface-enhanced experiments where
enhancement is due to the resonant excitation of the
SPP. One can view surface-enhanced phenomena as a
response of the SPP to the incident photon in the pres-
ence of roughness. This is analogous to the response
of electrons in a random potential to the external elec-
tric field where the well known effect of localization is
that in two dimensions, conductivity a. (cu) 0 as
cu 0. There is, however, an important difference; in
the latter case the system is in thermal equilibrium and
only electrons near the Fermi level are excited by the
external field. For the SPP, there is no equivalent to
the Fermi energy because of its Bose statistics. In
surface-enhanced experiments, SPP's are in a non-
equilibrium state obtained by excitation with an almost
monochromatic beam of photons. Therefore, any pro-
cess used to observe localization effects in this case
should be faster than the SPP's thermalization time.
This condition is satisfied in almost all experiments.

In Ref. 6, it is shown that in the presence of an
external photon, the average field intensity
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s

dom roughness. The localization effects may be ap
preciable only in a certain frequency range where radi-
ative losses are small. However, in other geometries,
e.g. , where a thin dielectric layer sandwiched between
two thick metal films with rough metal-dielectric inter-
faces, radiation losses can be reduced considerably.

The authors are grateful to Professor E. Abrahams
for helpful discussions. One of us (K.A.) also thanks
Dr. R. Zeyher for earlier discussions. This work was
supported in part by a PSC-BHE Faculty Research
Award and National Science Foundation Grant No.
DMR-83-03981.

p'"'(0) = 1+ ln(1+ Doq, ). (is)
Doq

Comparing Eq. (14) with (15), we find at least two
differences due to localization: (i) p (0 ) obtained
from Eq. (14) is always larger than that given by (15)
because, in the case of localization, electric field is
concentrated near the incident point rather than being
uniformly distributed on the surface as in the case of
extended SPP. This is shown in Fig. 1 for e (0 )
=1—2t0z/02 and for Ag where the complex e(A) is
taken from Johnson and Christy. ' In both cases, lo-
calization gives larger p(O) and the effects become
more pronounced near co, because of smail radiative
losses (y„d/y„0, see Table I). p (0 ) also increases
with 0 because of the increase in roughness coupling
due to the large SPP density of states. However, one
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FIG. 1. Enhancement p (0 ) with (solid curves) and
without (dashed curves) localization effects calculated from
Eqs. (14) and (15), respectively. Roughness parameters
used for the model dielectric, c5/ru, =0.5, ca/cu, = 1.5; for
Ag, 5=250 A, a =750A. Also q, —I/g. In the case of Ag,
to obtain the 0 scale in electronvolts use cu, = 5 eV.
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( ~E(r, II ~2) near the metal surface is related to (d~(r, r', Q)dt't(r, r", fI )) . For example, the z component of the
intensity just outside the surface can be written as

((E,(0, 0j0+ ) ( ) = ~E, (Q)), 0) ~ JI [1+Ut)L(fi, q, 0)], (13)

where we have assumed a p-polarized narrow incident
beam [of wave vector Q= (Q~~, Q,z) and I1 = cQ] with should not extrapolate these results for II too close to
a spread of q, in Q~~. In Eq. (13), the first term on the c0, because we have approximated y in Eq. (4) only by
right-hand side is the contribution from a flat surface the first term of the self-energy. The values of the
and the second term is due to the excitation of the SPP roughness parameters (a, 5) used in these calculations
via roughness. Comparing the second with the first are typically those obtained from enhancement experi-
term and using Eq. (8) for L(A, q, 0), we find an ments and we find the magnitude of p(A) to be con-
enhancement p ( Ii ) in the intensity, sistent also. (ii) Another important effect of localiza-

2ysc 1 tion is that in a frequency range where y„d(( y;„,p(n) = i+ ", , In(1+g'q, '). (14) [y;„,cc e2(O ) ], we have from Eq. (14) p(A )
~ I/e2(A ), which is consistent with experiments.

A similar equation for p(A) can also be derived in the In conclusion, on a semi-infinite metal, the Spp i
case of extended SPP by using the bare Do tns«ad localized parallel to the surface in the presence of ran-
Din Eq. (8):


