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Phase Diagram of Selenium Adsorbed on the Ni(100) Surface:
A Physical Realization of the Ashkin-Teller Model
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We have used electron diffraction to study submonolayers of Se adsorbed on Ni(100); p (2x 2),
c(2X2), and disordered phases were observed and the boundaries between them located. Sym-
metry arguments indicate that the phase diagram belongs to the universality class of the Ashkin-
Teller model and allow us to predict the critical behavior near the phase boundaries and at the mul-
ticritical point where they meet. Our lattice-gas-model calculations support these results. The
predicted critical behavior, and thus the universality arguments, should be tested by additional ex-
periments, in particular synchrotron-x-ray diffraction.

PACS numbers: 64.60.Cn, 64.60.Kw, 68.20.+ t

Layers of atoms and molecules adsorbed on clean
surfaces are interesting in that they may constitute
physical realizations of two-dimensional (2D) models
of great current interest in statistical mechanics. '
Theoretical results on such models can thus provide
insight into the nature of phase transitions and the to-
pology of phase diagrams of surface structures, and
theoretical predictions can be tested by performing ex-
periments.

The Ashkin-Teller model4 is a simple two-dimen-
sional model for which the phase diagram is quite well
known through numerous theoretical studies. ' The
phase diagram includes a second-order transition line
of cubic xy character which splits into two Ising lines at
a multicritical point.

In this Letter we report reflection high-energy elec-
tron diffraction (RHEED) measurements on the phase
diagram of selenium adsorbed on the Ni(100) surface.
The phase diagram includes two ordered phases with
c (2& 2) and p (2 && 2) structure, and a high-temper-
ature 2D disordered phase. Symmetry arguments and
model calculations indicate that the phase diagram be-
longs to the same universality class as that of the
Ashkin-Teller model. The many detailed theoretical
results can therefore be directly applied to this system.

Selenium was depositied from a Knudsen source and
relative coverages were measured by means of Auger
electron spectroscopy. The results reported here are
independent of source temperature (415—485 K).
RHEED measurements used 4.5-keV electrons in-
cident at 30 . Integrated diffraction beam intensity

profiles were measured as a function of selenium cov-
erage and substrate temperature with use of a spot
photometer. Details of the experiment will be
presented elsewhere.

Figure 1(b) shows measurements of the integrated
intensity versus coverage for the (0, ——, ) beam, which
occurs only for the p (2 x 2) phase, and for the
( ——,', —,

' ) beam, which is present in both the p (2X 2)
and c(2&&2) phases. The (0, ——,

' ) intensity increases
smoothly to a maximum with coverage, thereupon de-
creasing to the background as shown. The maximum
(0, ——,

' ) intensity has been assigned a coverage value
of 0=0.25; i.e. , we have assumed the surface to be
completely covered with a maximally ordered p (2&& 2)
overlayer as in previous work. " At 8 = 0.25 the
p (2&& 2) beams decrease in intensity with increasing
temperature and disappear altogether for T ) 500 K.
The ( ——,, —,) intensity also rises smoothly with in-
creasing 0 and reaches a peak at 0=0.5. There is a
small subsidiary maximum at 0 = 0.25 due to the
p (2 && 2) phase which persists up to 500 K.

The phase diagram extracted from these data is
shown in Fig. 1(a). There is a disordered 2D liquid
phase and two ordered phases with p (2 && 2) and
c (2 x 2) symmetry. These phase boundaries were
determined from inflection points in the intensity
versus coverage data. ' ' The phase boundaries
separating the p(2&& 2) and c(2&&2) phases from the
disordered fluid phase are apparently lines of higher-
order phase transitions. The character of the transition
between the c (2 x 2) and p (2 x 2) phases cannot be
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FIG. 1. (a) Experimental temperature vs Se-coverage
phase diagram showing the location of continuous phase
boundaries as determined from inflection points on
integrated-intensity vs coverage data. (b) Integrated intensi-

ty vs Se coverage. The dashed curve is the (0, ——, ) beam

and the solid curve is the ( —2, 2 ) beam. The error bar in-

dicates the noise level. The intensity measured at the Bril-
louin zone boundary has been subtracted.

determined unambiguously from the data; however,
our model calculations (see below) predict it to be con-
tinuous. ' The transition lines seem to come together
at a multicritical point (as in the Ashkin- Teller
model).

We now examine the connection between the
Se/Ni(100) system and the Ashkin-Teller model. The
philosophy to be used is that two systems belong to the
same universality class and exhibit the same critical
behavior if their symmetries, as expressed by the ap-
propriate Landau-Ginzburg-Wilson Hamiltonians, are
the same. Hence, to establish Ashkin-Teller critical
behavior there is no need to directly relate the micro-
scopic physical interactions to the parameters of the
Ashkin-Teller model. This strategy has been advocat-
ed by Domany et al. ' and used successfully, for in-
stance, by Mukamel, Domany, and Fisher' to show
that the phase diagrams of certain magnetic systems
are realizations of the three-state Potts model. The
symmetry considerations employed to this end below
are based on the assumption that Fig. 1(a) is indeed
the phase diagram and that there are no "intermedi-
ate" phases complicating the picture.

The Ashkin- Teller model has two Ising spins
s;= +1 and t; = +1 situated as each sitei on a square
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FIG. 2. Theoretical phase diagram determined by a
transfer-matrix scaling calculation using parameters given in
the text. The inset at the upper left is the Ashkin-Teller
phase diagram determined from Eq. (I). Insets (a) and (b)
show components of complex p (2 & 2) structure expected
near the p (2 x 2)-c (2 && 2) phase boundary.

lattice. The spins interact through second-order and
fourth-order nearest-neighbor interactions J and K,

0= —XJ (s;s~ + t; tj ) —K Xs, s~ t; t~. (1)
&i~&

(2b)

x,y

The phase diagram, Fig. 2 inset, consists of a high-
temperature disordered phase and two low-temper-
ature ordered phases. The ordered phase which is
stable for small values of K has nonzero values of the
order parameters (s) and (t), (s) = + (t) e0. The
ground state is fourfold degenerate corresponding to
the four possibilities for choosing the signs of (s ) and
(t). The critical indices o. , P, etc. , describing the
singularities of the specific heat, magnetization, etc. ,
are continuous nonuniversal functions of K along the
transition line to the disordered phase. ~ 8 For larger
values of K there is a mixed phase in which
(s) = (t) =0. The order parameter which becomes
nonzero here is the "polarization" (st) (in Enting's
notation7). The transition lines separating the mixed
phase from the disordered phase and the other ordered
phase are of Ising character. The mu1ticritical point
where all transition lines meet is a four-state Potts crit-
ical point.

For Se on Ni(100), we define order parameters as
follows:

s = (s) =N 'g( —1)"(n y), (2a)
x,y

t = (t) = X ' X( —1)~(n,),
x,y

p = (st) =N 'X( —1)"(—1)~(n ), (2c)
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H=r, ($ +t )+u/(s +t ) +u/s t

+ r2p2+ 8'stp + (3)

This Hamiltonian has the symmetry of the Ashkin-
Teller model, and we thus conclude that the phase dia-
grams belong to the same universality class. For
r

&
& r 2 there is a transition into the "magnetic" phase

with is i
= t &0, and the first three terms define the cu-

bic xy model. For ri ) r2 the three order parameters
are degenerate and the Hamiltonian becomes that of a
2D Heisenberg model with a third-order, anisotropy
term; i.e., that of the four-state Potts model, '' as it
should be. The expansion is intended only for defining
the symmetries of the various transitions and hence
determining the universality classes of transitions and
multicritical points. Landau "mean field" theory pre-
dictions are in general incorrect for this model.

The third-order term in Eq. (3) induces a "mixing"

where n„~ is the selenium-atom occupation of the Ni
substrate adsorption "site" at position (x,y) and X is
the total number of sites on the 2D nicke1 surface
square lattice. Clearly s = + t e0 in the p (2x 2)
phase. [A phase with s or t =0 would be a striped
(2&&1) or (I x 2) phase. ] The four degenerate ground
states of the p (2 x 2) structure correspond to the four
possible choices of signs for s and t, just as for the
Ashkin-Teller model. The order parameters s and t
transform as a two-dimensional representation of the
4pmm symmetry group of the Ni(100) surface, and the
phase transition belongs to the universality class of the
xy model with cubic anisotropy as does the transition
line in the Ashkin-Teller model.

The order parameters s and t are both zero in the
c(2&&2) phase, but p = (st) defined by Eq. (2c) is
nonzero in this phase. The c (2 x 2) phase thus
represents the mixed phase in the Ashkin- Teller
model. The two degenerate ground states of the
c(2&&2) phase correspond to p = +

ipse.

The state
with p ) 0 can be thought of as a mixture of the states
s =t & 0 and s =t ( 0. The state with p ( 0 mixes
the two state with s = —t. The order parameter p
transforms as a one-dimensional representation of the
Ni(100) symmetry group and so the melting line is of
Ising character. At the transition line between the two
ordered phases the mixed phase decomposes into its
constituents: The p & 0 phase may "order" into the
state s = —t & 0 or s = —t & 0. This line is also of Is-
ing character. '5

Hence, there is a one-to-one correspondence
between the symmetries of the ordered phases and
transition lines for selenium adsorbed on Ni(100) and
those for Ashkin-Teller model. The symmetry and
universality is reflected in the phenomenological
Landau-Ginzburg-Wilson expansion of the free energy
in terms of the order parameters involved:

of order parameters in the p(2x2) phase near the
c(2x2) phase boundary. Following the arguments in
Ref. 1, it is easy to see that this implies that the
p(2x2) phase has a complicated structure including
(2 x 1), (1 x 2), and c (2 x 2) components rather than
the simple p(2x2) structure with one Se atom per
unit cell [see Fig. 2, insets (a) and (b)]. Equivalently,
the ( ——,', —,

' ) and (0, ——,
' ) beams are not symmetry

related in this phase. This has important implications
for the spatial arrangement of the overlayer atoms.
Since Se atoms are too large to occupy nearest-
neigbhor sites on the Ni(100) substrate all these com-
ponents [or even the (2x 1) or (I x 2) alone] cannot
be accommodated in a single unit cell simultaneously.
This kind of p(2x 2) structure can only occur "on
average. " Therefore the local order in the p(2&&2)
phase must undergo spatial and temporal fluctuations.

Although the Ashkin-Teller model has the correct
symmetry to describe the various phases and transi-
tions, one cannot (and need not!) relate the parame-
ters J and K of Eq. (1) to actual physical interactions.
It is, however, of interest to construct a model with
physically identifiable parameters yielding a phase dia-
gram in the same universality class as both the
Ashkin-Teller model and the real Si/Ni system. To
this end, we have studied a simple lattice-gas model
with n i = + 1 representing the presence or absence of
an atom at site i with interactions up to fourth nearest
neighbor,

H= ~t X n;nj+e2 X n;n/+e3 X n;n&
nn nnn 3nA

+e, xn, n, +„Xn,.
4nn

The chemical potential p, is varied to control the cov-
erage. Because of the size of the Se atoms mentioned
above, it is appropriate to take e t = + ~ (nearest-
neighbor exclusion) . We utilized a transfer-matrix
scaling calculation' using strip widths up to 6-8 (also
verified by Monte Carlo calculations) for ~2= 1176 K,
64= 0.162 and e3 = 0 which results in the phase dia-
gram' shown in Fig. 2. Note that this very simple
model agrees semiquantitatively with the experimental
results in the region of interest, i.e., near the multicrit-
ical point. Calculated critical exponents v and q are
consistent with values expected along the critical lines,
especially far from the multicritical point, but precise
values are not expected with the strip widths in the
range used.

Having established the connection with the Ashkin-
Teller model, "universality" allows us to apply the
numerous theoretical results to the physical system
Se/Ni(100). This leads to specific detailed predictions
about the transition lines and critical behavior: (1)
The c (2x 2) phase melts through a continuous Ising
transition, with order-parameter exponent P= —,'; (2)
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the p(2&& 2) phase melts through a continuous transi-
tion of cubic xy character with continuously varying
exponents; (3) the transition line between the two or-
dered phases is also for Ising character. The transition
lines approach a multicritical point of four-state Potts
symmetry (P =+, , n = —,', . . . ) along a common
tangent as indicated in Fig. 2 (inset). New experi-
ments using synchrotron radiation are planned to test
these predictions and thus the underlying universality
assumptions.
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