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A simple natural Landau theory of two- or three-component systems is described, which appears
to give a region of the phase diagram in which quasicrystalline ordering is the state of lowest free
energy. The quasicrystals are stabilized by special geometric relations between the length scales
characterizing the components. Three components are required to stabilize a two-dimensional
quasicrystal (a Penrose tiling) but two components suffice to stabilize an icosahedral three-

dimensional quasicrystal.

PACS numbers: 61.50.Em, 61.55.Hg, 64.70.Ew

Shechtman et al.! have recently reported evidence
for a new phase of AlgMn which diffracts electrons like
a single crystal—with sharp Bragg peaks—but in a pat-
tern whose symmetry—icosahedral—is incompatible
with crystalline translational order. Levine and
Steinhardt? have described how the aperiodic tilings of
the plane invented by R. Penrose can be generalized to
to three dimensions to yield diffraction patterns with a
stunning resemblance to those reported in Ref. 1, and
have reported numerical simulations indicating that
such structures, which they call ‘‘quasicrystals,”” can
be at least locally stable in two and three dimensions.

The analysis of Ref. 2 is inspired by the geometry of
the Penrose tiling. Structures are built by specifying
atomic positions, and the argument has a distinct
number-theoretic flavor. On a more pedestrian level,
however, one might inquire whether such structures,
if they are indeed stable, might not emerge naturally
from the kind of simple Landau theory that has been
used for so long to form models of the possible struc-
tures of ordinary crystals.>

The principles that have guided us in this inquiry are
that the Landau theory should be simple and natural:
Quasicrystalline behavior should be generic. It should
not, for example, rely on a range of ad hoc numerical
coincidences contrived to make all terms in the free
energy negligible except otherwise inconsequential
ones favoring fivefold symmetry. We do, however, al-
low ourselves a small number (ideally just one) of
length ratios, since Penrose tilings and, if they really
exist, naturally occurring quasicrystals, are critically
dependent on specific geometrical relations between
the constituent objects.

Several years ago Alexander and McTague* touched
on the possibility of icosahedrally symmetric structures
in the Landau theory of crystallization, where the or-
der parameter ¢ is the deviation of the atomic density
from the uniform value characteristic of the disordered
state. The rules of the game’ are that wave vectors of
a single magnitude k are overwhelmingly favored.
One asks what linear combination of such plane waves

will minimize a free energy of the form
F=ffd3r, f=—=tp? =3+ gt (1

[Constants multiplying the cubic and fourth-order
terms can be removed by a suitable rescaling of ¢ and
the free-energy density, f, so that (1) gives the general
fourth-order Landau theory, with ¢ proportional to
T.— T, where T, is the temperature at which a
second-order transition would occur, were there no cu-
bic invariant.]

The cubic term makes it possible for ordering to oc-
cur above T, and structures with large cubic terms are
particularly favorable. A large cubic term requires
many wave vectors forming equilateral triangles,
which leads one naturally to consider structures such
as three wave vectors parallel to the edges of an equila-
teral triangle (planar hexagonal structure), an oc-
tahedron (body-centered-cubic structure), or an
icosahedron. The bcc structure has a significantly
better cubic term than the isosahedral structure, and
nothing further is said about the possibility in Ref. 4.

We have reexamined possible icosahedral structures
within this model, and found that there are, in fact,
three distinct icosahedral stationary points, depending
on the phases associated with the various plane waves.
None of them, however, is ever globally stable com-
pared with more conventional competing structures:
The body-centered-cubic structure wins between
t=0.089 and 7= —0.055, the hexagonal structure,
between ¢= —0.055 and r= —2.15, and a single
cosine (smectic structure) appears to be the most
stable of all below t= —2.15. We have found some
numerical indications that the icosahedral structures
are not even local minima of the free energy (1).

Since this model incorporates no geometrical infor-
mation, and since the quasicrystals of Refs. 1 and 2
have more than one component, this negative con-
clusion is not discouraging. A multicomponent Lan-
dau theory allows for the introduction of geometrical
relations, by associating a preferred wave vector with
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each component. The simplest such generalization is
to allow one additional component, characterized by an
order parameter ¢, whose preferred wave vector q has
a special relation to the preferred wave vector k for the
first component. We take the second component to be
above its transition temperature. Its order parameter
will then vanish, unless ¢ can couple to ¢ through a
term of the form

Jounarr. 2

Linear coupling can only occur if g =k, which is
geometrically uninteresting. If, however, ¢ is any-
where else in the range between 0 and 2k then we can
form an isosceles triangle with sides of length k and
base of length g, and there can be a nonvanishing term
of the form (2) with n=2. A quadratic term in ¢ with
a positive constant 7 is required for stability. If we
were unlucky in our efforts to be natural and simple
we might require more than one subsidiary com-
ponent, and therefore the general form of the free-
energy density to consider is

f=—t? =3+t + 3 [r oty —dpw?l. )

[The form (3) with only the parameters ¢ and 7,
remains general, since an additional constant in the
term coupling ¢ (; and ¢ can be absorbed into a rescal-
ing of ¢,;. Naturalness and simplicity decline rapidly
with the number of values of i.]

In two dimensions to get a structure with fivefold
symmetry we should take a ratio g/k that gives the
isosceles triangles a vertex angle « that is an integral
multiple of 36°. We then find that there are indeed
temperture ranges where structures incorporating the
angle « are favored over structures (for example, hex-
agonal lattices with sixfold symmetry) that take no ad-
vantage of the second component. However, a pair of
vectors of length k at the angle «, which generates a
conventional two-dimensional Bravais lattice, always
yields a lower free energy than that generated by the
symmetric set that points to the five vertices of a regu-
lar pentagon. Quasicrystals are never stable.

If, however, we introduce a second wave vector
(i.e., a third component) which gives a second isos-
celes triangle with a vertex angle B that is a different
multiple of 36° from «, then within the temperature
range where the second and third components order,
there are indeed regions where the quasicrystal gen-
erated by five pentagonal vectors is stable over the or-
dinary Bravais lattice. At a certain price in naturalness
and simplicity (two extra components with special
length scales rather than just one) we can stabilize
the quasicrystal. This should be compared with
Steinhardt’s observation® that in numerical simulations
it is difficult to stabilize two-dimensional quasicrystals
with two components, but relatively easy with three.

In three dimensions naturalness and simplicity tri-

umph. If we take ¢ and k to be in the ratio of the dis-
tance between either next-nearest-neighboring or
nearest-neighboring vertices of an icosahedron to their
common distance from the center [g/k=(2
+2./5)Y2=1.7013 or 1.0515] then there is a tem-
perature range in which a structure with twelve wave
vectors k pointing from the center to the vertices of an
icosahedron is stable over all other structures that we
have been able to find which take advantage of a single
additional component with wave vector g (as well as
over those structures that make no use at all of the
second component).

These assertions are subject to the reservation that
we have not been rigorous in our search for free-
energy minima. For appropriate ranges of ¢ and  we
have been unable to find any structures with free ener-
gy lower than the quasicrystalline ones, but have yet to
produce a proof that none exist. The reader is invited
to refute us.

In the remainder of this note we sketch some of the
quite elementary details of the analysis supporting
these conclusions, and end with some beautiful pic-
tures.

Consider the case of a single extra component. The
first component is a linear combination of plane waves
with wave vectors k; of magnitude k and amplitudes
{;; the second has wave vectors q; of magnitude g and
amplitudes ¢,;. Reality of the order parameter requires
that wave vectors occur in opposite pairs with
complex-conjugate amplitudes.

For any given set of i; the minimization with
respect to the ¢; can be carried out explicitly, giving an
additional fourth-order term in  with magnitude pro-
portional to 1/7. This brings us back to a single com-
ponent with free energy’

D XRVHE XURVRVIE ) SURVRUSN
— (/4 S mbpmtbn. (4

The sums in the second and third terms are over all
trios and quartets of wave vectors k that add to zero.
The sum in the last term is over all m and »n with
|k, +kpl=gq.

At high temperatures (negative ¢) ordering is driven
by the cubic term and structures are favored with sets
of wave vectors that contain many equilateral triangles.
At lower temperatures (positive ¢), however, it is the
quartic terms that determine the structure, and sets of
wave vectors that can take best advantage of the nega-
tive fourth-order term are favored. For the values of
q/k mentioned above, the sets of k’s favored in this
way do not in general contain any that are parallel to
the edges of equilateral triangles or nontrivial quadrila-
terals. As a result the cubic term vanishes and the
positive quartic term only contains amplitudes ; that
occur in complex-conjugate pairs. The free energy is
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thus a simple quadratic form in the [¢|2, which can
easily be minimized for any geometry that one wishes
to test.

Note that this restricted set of amplitudes contains
the case of a single pair of amplitudes giving the
‘“‘smectic’ structure that appears to win out over all
the others in the one-component case. If, therefore,
we can stabilize a quasicrystalline solution within this
restricted family, then we have some assurance that
none of the single-component crystalline structures
can do better below ¢t = —2.15.

We have found that the structures that do best have
a single common magnitude |y| for all their ampli-
tudes. If a structure contains 2n wave vectors
(+k;, ..., xk,) and N is the number of distinct
pairs of those wave vectors that add to give a vector of
length ¢, then at the value of |y| that minimizes the
free energy we have

Soin=—1¥112—6/n—N/(rn?)]. %)

Note that unless N manages to grow quite rapidly
with n, structures with low » [smectics (n=1), two-
dimensional Bravais lattices (n=2), or three-
dimensional Bravais lattices (n=3)] will be favored.
If n=1 (so that N=0) we have

Ssm=— l2/6 (6)

for the energy of the smectic phase.

Let us compare this with other possible structures in
the two-dimensional case. When n =2 we can form a
Bravais lattice. For values of g/k (such as those con-
sidered below) that lead to no special crystal sym-
metries, N will equal 2, and the free energy of the
crystal will be

Sx=—1/19-1/27)], @)

so that for 7 < ¢ the crystal is stable over the smectic.

When ¢ and k are in the ratio of the base to the sides
of an isosceles triangle with a vertex angle « of 36°,
72°, 108°, or 144°, a quasicrystal is possible with n =15
and N =10. This gives

fox=— /13 —2/(57)]. (8)

A comparison of (7) and (8) reveals that the quasi-
crystal always loses to the crystal.

Suppose, however, that we have a second com-
ponent associated with a different wave vector qj)
that permits isosceles triangles with a vertex angle 8
that is another multiple of 36°. This has no effect on
the smectic, and it simply favors a crystal that induces
ordering in only one of the two components (that with
the smallest 7). The quasicrystal, however, takes ad-
vantage of both components, and (8) becomes

Sox=— Y13 —2/(57) =2/ (574 ] )

1526

Evidently the quasicrystal does best when 7(;) =7, and
it becomes, in fact, more stable than the crystal below
the same temperature 7= % at which the crystal be-
comes more stable than the smectic. We have found
no other structure that does as well as the quasicrystal
in this temperature range.

In three dimensions a single additional component
can do the work of two. Suppose, for example, we
take the case where the ratio of g to kis 1.0515, the ra-
tio of the nearest-neighbor distance to the distance
from the origin in the set of twelve vertices of a regu-
lar icosahedron. (The next nearest-neighbor ratio
1.7013 works just as well.) We can form a Bravais lat-
tice (of trigonal symmetry) that has n=3 and N =6,
or we can take twelve wave vectors pointing from the
origin to the twelve vertices of the icosahedron, in
which case n=6 and N=30. In the former case we
have

So=—1¥[10—2/(37)1, (10)
and in the latter,
qu=—t2/[11_5/(67')] (11)

The quasicrystal is again stable over the crystal [and
over a smectic (n=1) structure] when 7 drops below
+. We have not found any structure of lower free en-
ergy in this temperature range.

This model should be useful for simple studies of
crystal-quasicrystal transitions, and other aspects of
their macroscopic phenomenology, particularly when
one softens the constraints that pin the lengths of the
wave vectors. Which version is closest to what one
might optimistically characterize as real quasicrystal-
line behavior remains to be seen. The ¢/k ratio of
1.7013 may well have a larger region of stability. A
more intricate possibility is to take the first component
to have 30 k vectors parallel to the edges of the
icosahedron, and the second to have 30 g vectors
parallel to the lines joining next nearest neighbors. In
this way one can exploit the existence of equilateral
triangles among the k vectors to achieve a higher tran-
sition temperature (¢ > 0) in the manner of Ref. 4,
while retaining the possibility of reducing the fourth-
order terms compared with the bcc structure, because
of the ordering induced in the second component.

One might worry that because the order is aperiodic
in a quasicrystal, the two components would have
trouble keeping out of each others’ way, particularly in
a model like this one so primitive as to allow each
component only a single wavelength. That this is not
the case can be seen by plotting a few density maps of
the two components.

A particularly beautiful pair of patterns is given by
the three-dimensional case in which the ratio q/k
= 1.0515, where the density of the primary component
is a sum of twelve plane waves with wave vectors
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FIG. 1. (a) Plane cross segtion of a three-dimensional
quasicrystal, as described in the text. The point of perfect
fivefold symmetry is in the upper left-hand corner. In black
regions the first component has a density greater than its
mean; in white regions, less. (b) The same cross section.
Black and white regions now refer to the second component.
If the two parts of the figure are superimposed the two com-
ponents will be seen to match remarkably well.

along the twelve directions from the center to the ver-
tices of the icosahedron, and the secondary component
has a density which is the sum of thirty plane waves
directed (both ways) along the thirty edges. Figure 1
shows the density in a plane perpendicular to the five-
fold axis at a distance of two secondary-component
wavelengths from the origin. Black indicates a density
greater than the mean, and white, a density less than
the mean. The primary component is shown in Fig.
1(a) and the secondary, in Fig. 1(b). The reader is
urged to copy part (b) onto a transparency and super-
impose it on part (a). The match between the two
—with the secondary component fitting into regions
where the density of the first component is low—is
spectacular throughout the plane, even though neither
component is periodic.

Could nature really refuse to take advantage of so
marvelous a possibility for ordering?
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