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Origins of Thixotropy
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Soft-sphere scaling laws and nonequilibrium particle-dynamics simulations show that time-
dependent shear-thinning behavior involving structural ordering (thixotropy), typically seen in
complex colloidal dispersions, derives from a first-order thermodynamic phase transition between a
normal shearing fluid and a partially ordered smectic phase. The transition stems from a perturba-
tion of the equilibrium fluid freezing point by the applied strain rate.

PACS numbers: 64.70.Ew, 05.70.Ln

The scaling laws of soft spheres, defined by the
model pair potential
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p'= (pV/NkT) p', (2)

where p' is the reduced hybrid density-temperature
state variable; for n = 12

p = (N~'/V)(. /kT)' '. (3)

The non-Newtonian viscosity depends only upon p as

provide unique insight into equations of state and
phase diagrams, ' melting and freezing, glass transition
phenomena, self-diffusion, and the transport coeffi-
cients of viscous flow and thermal conductance, 5

correlating diverse molecular-fluid properties over
whole p-V-T ranges. This singular success of the
soft-sphere model arises because all these phenomeno-
logical properties share a common geometric origin at
the particulate level. The underlying determining
structures, and the statistical fluctuations of those
structures, depend primarily on the repulsive part of
an effective pairwise additive potential well approxi-
mated by Eq. (1).

Non-Newtonian flow curves for a range of sheared
colloidal suspensions including both the characteristic
shear-thinning and shear-thickening (dilatant) regions
have recently been found to conform closely to the
flow curve calculated for a soft-sphere model with
n = 12 in Eq. (1).6 In this correlation the effective po-
tential (e) relative to the thermal energy of the
suspension (kT) must be increased by a large factor,
determined by a Peclet number characterizing the
suspension, because of the presence of the Stokes
medium.

A perfect hydrodynamic medium does not thereafter
alter the equations of state or the phase diagram, or af-
fect compliance with the soft-sphere scaling laws. The
reduced pressure of the soft-sphere model, for exam-
ple, corresponds to the osmotic pressure of a suspen-
sion, and is defined as

where p~ is the reduced tangential stress element and
the reduced strain rate is

y = y(m tr'/e)' '(kT/e)' " (5)

For dispersions to which the soft-sphere model is
applicable, Eqs. (3)—(5) show that the reduced flow
curve q'(j') cannot vary independently of both re-
duced concentration (No- /V) and reduced tempera-
ture (kT/e); it depends only on the hybrid scaled
product variable p'. When the effective potential en-
ergy (e) of typical colloidal dispersions, with o- —1

p, m, m —10 '6, and medium viscosity q —1 P, is
estimated with use of a characteristic Peclet ratio de-
fined from Brownian motion studies, 8

N"=" (6)
kT m~2

these dispersions are seen to differ from molecular
fluids in that e » kT. In a statistical mechanics sense
these are very low-"temperature" systems. One
consequence of this drastic increase in the relative
effective-potential/thermal-energy ratio is that phase
transitions, which are normally associated with dense
fluids and solids, may be exhibited over the whole
range of dispersion dilutions. The transitions occur at
characteristic p' values and the low effective thermal
energy can be compensated by a low concentration
Kq. (3)].

Ackerson and Clarke have reviewed the experimen-
tal literature and, further, reported light scattering
studies observing a sequence of ordering transitions in
a sheared dispersion with a concentration as low as
0.1%. Computer simulation studies on simple hard-
sphere and soft-sphere models under conditions of
homogeneous shear, in the vicinity of the freezing
transitions, have also been found to exhibit a layered
phase at higher strain rates. ' Since these phases
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comprise two-dimensionally ordered layers of particles
sliding over one another with enhanced fluidity, we
shall adopt here the term "smectic" for their descrip-
tion.

The scaling laws for the soft-sphere (n = 12) model
have been determined for the equilibrium fluid-crystal
melting transition pressure,

P = 22.6T (7)

and for a glass transition from the metastable super-
cooled fluid to an amorphous solid, 3

p, = 537'i4.
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These transitions are observed in simple lyophobic
dense suspensions. When n & 6 the bcc phases are
more stable' and freezing transitions involving both
bcc and fcc/hcp phase transitions are known to occur,
especially in lyophilic suspensions and charged col-
loidal dispersions where the effective interaction po-
tential has a longer range.

The time-dependent ordering and disordering
phenomena in sheared colloidal dispersions are a direct
consequence of the applied strain rate on these transi-
tions. Moreover, the two dominant features of the
typical dense-suspension non-Newtonian steady-state
flow curve, the steep shear-thinning and shear-dilatant
transformations, 6 stem from perturbations of Eqs. (7)
and (8), by the applied strain rate, for freezing and
glass formation.

The present results relate only to the ordering tran-
sitions and derive from computations on a model sys-
tem of 512 soft spheres (n = 12), with homogeneously
imposed shear strain, oblique periodic boundary condi-
tions, and isothermal rescaling. " The reduced tem-
perature for the three isochores studied is T=1.0.
Figure 1 sho~s the steady-state phase diagram, in the
region of interest, constructed from the data points so
far available. The calculations were performed by use
of a variable-time-step algorithm; the data points are
time averages of at least 5000 4t corresponding to an
average sample time of —10(ma- /e)' . Standard
deviations of subaverages indicate the statistical uncer-
tainties in single phases to be less than 1% in pressure
and approximately 5% in the viscosity data.

The two-phase coexistence line drawn through the
pressure points represents a shear-rate-induced reduc-
tion to the constant in Eq. (7). From y =0 to j & 0 a
discontinuity arises because the sheared crystal must
exhibit plastic yield to become essentially a smectic
phase in which crystal layers slide over each other.
The details of the registry of the layers at low strain
rates remains to be investigated. It seems reasonable
to assui ~e, however, that for a crystal to be sheared
homogeneously along its most stable shearing plane
(probably the ill faces), in the limit that j 0, the
thermodynamic properties of the unperturbed crystal
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FIG. 1. Sheared soft-sphere fluid pressures. Solid points
joined by solid lines denote single-phase steady-state data;
dashed lines join the data (open circles) for respective meta-
stable branches. In the single phases the statistical uncer-
tainties are within the circle radii; data points in the two-
phase regions are denoted by crosses, and for these points
the errors may be as high as 5%. The arrows show the
equilibrium fluid-fcc freezing transition and the amor-
phous-smectic coexistence line at zero strain rate.

are recovered. Shearing small periodic systems in un-
favorable orientations can lead to artifacts such as
shear-induced melting or other phase transitions
depending on the geometry. '

Thermodynamic stability criteria require the crystal
and fluid phases to be initially shear dilatant. ' The
isochores in Fig. 1 show that the sheared crystal is less
dilatant than the sheared fluid. At constant T, V the
criterion for phase coexistence is that the partial Gibbs
free energies (G) of the two phases be equal. If, when

j is small,

dAG ~dip
dy ~t dy

where 4 denotes the phase differences, it is clear that
the effect of the shearing strain is to shift the free-
energy balance in favor of the smectic crystal.

The isochores in Fig. 1 clearly show the two-phase
region bounded by the commencement and com-
pletion of the shear-induced layering transition along
the p (y) line. Within the computational uncertainties
of both the data, and Eq. (7), the line extrapolates at

y = 0 to the equilibrium fluid-crystal coexistence point.
There are several possible smectic phases. For den-

sities below normal freezing, at low shear rate, a bcc
phase is more stable than the sheared fcc/hcp phases.
In the soft-sphere model the fluid-bcc and fluid-
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fcc/hcp points are close together. The sheared fluid
goes first to a bcc phase, which at higher density even-
tually undergoes a second phase transition to one of
the close-packed structures. Preliminary evidence of
such a further division of the smectic phases into two
regions (A and B) can be gleaned from the data in Fig.
1.

In the two-phase regions the pressure decreases with
strain rate. For isothermal-isobaric shearing this
would be manifested as a first-order discontinuous de-
crease in volume, i.e. , a sharp negative dilatancy. In
colloidal suspensions decreases in osmotic pressure are
observed, resulting in an outflux of medium from the
sheared regions and surface wetting. This effect is
well known for thixotropic suspensions. It is the oppo-
site effect of the yet more common experience of sur-
face drying which is observed for dilatant dense
suspensions, caused by a sudden increase in osmotic
pressure in the sheared region, 6 with a consequent in-
flux of medium.

Figure 2 shows the computed rheological flow curve
for the isochore p = 1.1. Ashurst and Hoover have
given the following expression for the Newtonian

soft-sphere (n = 12) viscosity:
' 2/3

' kT
7l

f

= 0.171+3.025p (10)

The Newtonian viscosities for all three isochores, ob-
tained by extrapolating to zero-strain rate, agree,
within the uncertainty ( —5%), with Eq. (10). Confir-
mation of the first-order nature of the transition is ob-
tained by the simulation of the metastable branches on
both sides of the transition; both the volumetric and
rheological equations of state extrapolate smoothly.
Some of th|: metastable-phase data points are also in-
cluded in Figs. 1 and 2.

The time dependence is also illustrated in Fig. 2. At
a strain rate y = 3.2 the metastable sheared fluid
branch can be observed for long times but when the
strain rate is doubled to 6.4 there is a slow phase
transformation to the layered phase; the non-
Newtonian viscosity shear thins with a relaxation time
about 10 times longer than that for responses to simi-
lar accelerations or decelerations of j within either
phase.

The present soft-sphere model results are compared
in Fig. 3 with recent experimental measurements' for
a PVC plastisol in dioctylphthalate, chosen for its
known, approximately uniform and spherical, particle
distribution. The two experimental volume fractions
50'/0 and 55% correspond closely to the soft-sphere re-
duced densities p = 1.0 and 1.1. The appropriate
phenomenologica1 reduction parameters are the New-
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FIG. 2. Non-Newtonian viscosity of the sheared soft-
sphere model for p = 1.1; solid circles, open circles, and
crosses refer to stable, metastable, and two-phase points.
The inset shows the time-dependent thixotropic behavior for
j =6.4, and both the metastability and rheopectic behavior
(antithixotropy) for j = 3.2.

FIG. 3. A comparison with some experimental measure-
ments of the flow curve for a suspension of PVC plastisol;
the non-Newtonian viscosities are reduced according to the
Newtonian values, but with original strain-rate scales in
soft-sphere units and reciprocal seconds. When the strain
rates are reduced (see text) the two sets of data almost coin-
cide.
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tonian suspension viscosity (7)o) and the characteristic
frequency corresponding to the effective thermal ener-
gy when e = kT. The two sets of curves, with peculiar
logarithmic strain-rate scales, almost superimpose
when the plastisol values of m, o., and e [from a Peclet
frequency given by Eq. (6)] are substituted to reduce
the PVC strain-rate abscissa to log (j ') .

Finally, although the present studies are aimed at
dense-suspension rheology, we note that the flow
curves in the smectic region of Fig. 2 relate to recent
investigations of sheared metallic crystals in the high-
frequency domain. ' These shock-wave experiments,
supported by preliminary computer simulations, '

show a square-root power-law increase in stress with
shear frequency following plastic yield. If a sheared
material in Couette geometry were shear strained
homogeneously and isothermally, there could be no
originating distinction between crystal or fluid at
steady-state equilibrium. The preliminary rheological
data obtained here are indicative of a complex rheo-
gram determined by phase transitions as the relative
free energies of alternative smectic phases vary with
shear rate. The two-phase regions correspond to a
reduction in shear stress with shear rate at constant
volume. The net effect appears to be that the shear
stress does not increase appreciably with shear rate but
remains approximately constant to within the uncer-
tainty of the calculations in the stability range of the
smectic phases investigated. At higher strain rates
large stress increases and shear thickening effects may
be observed, however.

Financial support from the Science and Engineering
Research Council (U.K.) through the award of a
Senior Research Fellowship is gratefully acknowl-
edged. The work benefits from many helpful discus-

sions with colleagues, Professor M. F. Edwards and
Dr. W. C. MacSporran.

'W. G. Hoover, M. Ross, K. W. Johnson, D. Henderson,
J. A. Barker, and B. C. Brown, J. Chem. Phys. 52, 4931
(1970).

W. G. Hoover and M. Ross, Contemp. Phys. 12, 339
(1971).

J. N. Cape and L. V. Woodcock, J. Chem. Phys. 72, 976
(1980).

4M. Ross and P. Scholfield, J. Phys. C 4, 305 (1971).
5W. T. Ashurst and W. G. Hoover, Phys. Rev. A 11, 658

(1975).
6L. V. Woodcock, Chem. Phys. Lett. 111,455 (1984).
7For a derivation and review of the soft-sphere scaling

variables see, e.g. , Y, Hiwatari et al. , Prog. Theor. Phys. 52,
1105 (1974); the distinction between hybrid state-reduced
properties (asterisk) and particle reduction (tilde) is adopted
here.

sl. M. Krieger, Trans. Soc. Theol. 7, 101 (1963); see also
I. M. Krieger et al. , J. Colloid Interface Sci. 34, 16, 91
(1970).

9B. J. Ackerson and N. A. Clarke, Physica (Utrecht)
118A, 221 (1983); a literature survey of both the equilibri-
um and shear-induced transition phenomena in colloidal
dispersions is given in Refs. 1 to 22 of this article.

toJ. J. Erpenbeck, Phys. Rev. Lett. 52, 1333 (1984).
t tSee, e.g. , D. J. Evans, Physica (Utrecht) 118A, 51

(1983).
t2D. J. Evans, Phys. Rev. A 25, 2788 (1982).
t3L. V. Woodcock, Discuss. Faraday Soc. 76, 334 (1983).

M. F. Edwards, W. C. MacSporran, and L. V. Woodcock,
unpublished.

tsD. E. Grady, Appl. Phys. Lett. 38, 825 (1981).
W. G. Hoover, A. J. C. Ladd, and B. Moran, Phys. Rev.

Lett. 48, 1818 (1982).

1516


