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Long-Wavelength Oscillations in an Inhomogeneous One-Component Plasma
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The perfect screening of charge fluctuations in an equilibrium plasma is extended to the time-
displaced structure function of a general inhomogeneous one-component plasma. We find that the
long-wavelength modes oscillate undamped with a single frequency co, ~' being an angular average
of squares of plasma frequencies co~2= 4n e2p /m in uniform systems with density p. Our results are
derived rigorously from the Bogoliubov-Born-Green-Kirkwood- Yvon hierarchy under some
reasonable assumptions on the spatial decay of correlations and contain as special cases previously
obtained results of this kind.

PACS numbers: 52.35.—g

It is known that the static structure function S (q t ~ q2) describing charge fluctuations in an equilibrium classical
d-dimensional plasma obeys a perfect screening condition which can be written in the following form where q&

and q2 are vectors in d-dimensional space (our results hold for all d ~ 2, but for simplicity we formulate them ex-
plicitly only for d = 3):

J dq[JI dqt ~qt~ 'S(q&~q)] = kBT. (1)

In the homogeneous case, Eq. (1) reduces to the usual Stillinger-Lovett second-moment condition S(k)= (kaT/4vr) ~k~2 as k 0 with S(k) =f dqexp(ik q)S(q ~0). In Ref. 1, Eq. (1) was established under the as-
sumption that the direct correlation function behaves as the potential at large distances; it can also be shown to be
an exact consequence of the Born-Green- Yvon equations. 2

In this Letter, we derive a dynamical generalization of Eq. (1) for a large class of nonuniform one-component
plasmas (OCP). Consider an OCP with particles of charge e and mass m, having a background density pt, (q) which
is asymptotically constant in (almost) all directions, i.e. , lim„pt, (r, fI ) = pt, (Q) exists (for almost every 0),
with q = (r, 0), r = ~q ~, and 0 the angles of q. Let N(q, t) = g, 5[q —qJ(t)] be the particle number density,
p(q) = (N(q, 0))« the corresponding equilibrium average density, and

S(qt, tlq2) = e'[(N(qt, t) N(q2, o) &« —p(qt) p(q2) ]

the time-displaced charge-charge fluctuations. Then the proper generalization of Eq. (1) is

J dq [ "dqt I q, I

—'S (q, , t I q ) ] = ka T cos(cot),

with

t02= (4me2/m) [ lim „(dA/4m. )p (rt, fI)].

(2)

As sketched below, Eqs. (2) and (3) are derived from the time-dependent Boguliubov-Born-Green-Kirkwood-
Yvon hierarchy under some reasonable spatial-clustering assumptions. Let us first note that Eqs. (2) and (3) in-
clude various known cases, obtained from linear response and macroscopic electrodynamic considerations:

(i) For a uniform OCP with background density pb, co=&0~= (47re2pt, /m)'i is the usual plasmon frequency,
and Eq. (2) reduces to

S(k, t) = [(ka T/4m )cos(c0~t) ] ski', k —0,

the known long-wavelength behavior.
(ii) For a semi-infinite OCP bounded by an impenetrable plane wall,

0, x&0,
pb(q) =',

q = (x,y) (y the component of vector q parallel to the wall), we have t0=co~/J2 and Eq. (2) is equivalent to a sum
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rule obtained by Jancovici. 5 Indeed, with introduction of the partial Fourier transform in the y direction,

S(xi, k, t I x2) = dye e 'S (xi,yi, t I x2, 0),

and the fact that

dy e'"'(x'+ lyl') "'=2m. lkl 'e

our Eq. (2) becomes

Ji dxi„dx2 e ' S(x&,k, tlx2) = [(kBT/2m)cos(co t/W2)] lkl,

which is the same as the classical limit of Eq. (3.11) of Ref. 5.
(iii) For a two-density OCP,

k 0,

p+, x)0,
pt, (q) =

0

Eq. (3) gives cu
2 = —,

'
(co2+ + co2 ), and in a form analogous to (4), Eq. (2) is the result of Sec. 5 of Ref. 5.

We now formally give the main argument of the proof of Eq. (2). Details and additional results will be given by
Jancovici, Lebowitz, and Martin. The BBGKY hierarchy yields the following expression for the second time
derivative of spatial averages over the time-dependent structure function:

Q2 fe

, dq, f(q, )S(q, , t I q)
Qt2 J

= m 'J dqi '7if(qi) [p(q&) J dq2F(q& —q2)S(q2, tlq) ]

+ m 'J"dpiJ"dqi(pi '7i)f(qi) (pi &i)S(nt, qi, t lq)

+ m ' dqi'7if(qi) [eE(qi)S(qi, tlq)+e J dq2F(qi —q )2p (Tqi, q2, tlq)],

where F(qt —q2) = —'7&e2/Iq, —q2I is the Coulomb force and f(qi) is an arbitrary space-dependent function.
S(p&,qi, tlq) is a generalized momentum- (pi-) dependent structure function. E(qi) is the electric field due to
the total charge density and p T(q&, q2, t I q) is a fully truncated three-point function. Choosing f(q, ) = 1 in Eq. (5)
gives

2

dq S(q, tlq) =0.
t2~

This implies the validity of the electroneutrality sum rule for all times,

J dqi S(qt, tlq) =0,

as a consequence of the fact that the same rule holds in equilibrium at t=0. If we now choose f(q&) = Iq&l
and integrate over q, the first term on the right-hand side of (5) can be written, after an integration by parts and an
exchange of integrals, as

(e /m)& dqi'7i [p(qt)'7&lq&l ']( dq[ i dq2 Iq&
—q2I 'S(q2, tlq)] I. (7)

If we set
r

n(q, t) = J dq [Jr dq2 lq, —q, l-'s(q, , tlq)],
then the Poisson equation gives

'7ta(q, , t) = —47r J dq S(q2, tlq) =0, (8)

where we have used S(qi, tlq) = S(q, —tlqt) (stationarity of the equilibrium state) and Eq. (6). Thus n(qi, t) is
harmonic everywhere. Hence, since it is uniformly bounded, n(qi, t) is constant with respect to q&. Therefore,
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with the definition
r

e 1

m J dqt'7t p(qt)'7t e2 1
lim Jl p(qt)'7t

~

~

d'artmr-~
e2 f e2

lim „p( r, II ) d II = lim Jfp & ( r, f1 ) d II
mr~~ mr

[p(r, 0) —pt, (r, 0) 0, r ~, because of neutrali-
ty], the expression (7) is simply —to n(0, t). More-
over, it can be shown that with f(qt) = ~qt~ ', the
second and third terms on the right-hand side of (5)
vanish when integrated on q. One proceeds by com-
paring these terms with the corresponding ones for
uniform sytems: The argument involves the charge
sum rules, as well as a time-dependent generalization
of the dipole sum rule of Ref. 7. With all this, Eq. (5)
reduces to the simple second-order differential equa-
tion

2

t' a(0, t) = —to 2n(0, t). (10)

Supplemented with the initial condition (1), and
t)a(0, t)/t)t~, =a=0 [a(0,t) is even in time], the solu-
tion of Eq. (10) is our result, Eqs. (2) and (3).

A complete proof requires a specification of the
cluster properties needed for the convergence and per-
mutation of integrals, and the vanishing of surface
terms at infinity. The main assumption is the follow-
ing: At any fixed time the correlations of the inhomo-
geneous OCP with all arguments going to infinity in a
fixed direction II converge sufficiently fast to the
correlations of a uniform OCP with density pt, (A ). If
the system is bounded by hard walls (as the semi-
infinite OCP) and the particles undergo elastic col-
lisions at the walls, Eq. (5) can still be used but one
has to take care of boundary contributions; the formu-
las (2) and (3) remain true, however.

Finally, it should be stressed that, whereas the static
condition (1) holds generally for multicomponent sys-
tems, Eq. (2) is valid only for the OCP. Multicom-
ponent systems show a much more complex dynamical
behavior with dissipation occurring also in the long-

wavelength limit. The reason for this difference is that
in the one-component plasma momentum and current
go together so that interparticle collisions (which al-
ways conserve momentum) also conserve current.
This is particularly transparent in the homogeneous
case where total momentum and total current are con-
served quantities. The interesting thing about our
result is that we still get a well-defined, nondissipative,
oscillation even in the homogeneous case.
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