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Massive Gross-Neveu Model: A Rigorous Perturbative Construction
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We consider the massive Euclidean Gross-Neveu model. Thanks to the Pauli principle the bare
perturbation expansion for the model with an ultraviolet cutoff is convergent in a disk whose radius
corresponds by asymptotic freedom to a small finite renormalized coupling constant. The theory
constructed in this way is physical (it satisfies Osterwalder and Schrader's axioms) in contrast with
the planar theories obtained by similar perturbative expansions.
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Let us consider a fermionic theory in which the fer-
mions have an explicit bare mass 1 (which fixes the
energy scale). The fermions have .V components and
interact via the quartic Lagrangian Wt = —,

'
& (QQ),

X & 0; we call this theory the massive Gross-Neveu
model. ' There does exist a Wick order on the interac-
tion. For simplicity, we neglect it in the following. In
contrast with bosonic theories, we remark that the par-
tition function of such a theory in a finite box and with
an ultraviolet cutoff has an absolutely convergent ex-
pansion no matter how large the (bare) coupling con-
stant.

Using, as in Feldman et al. , a multiscale cluster ex-
pansion, we can remove the constraint of a finite box,
and obtain that the normalized perturbative expansion
for the (infinite volume) Schwinger functions of the
theory with fixed ultraviolet cutoff still converges for a
bare coupling inside a small disk depending on the ul-
traviolet cutoff.

To remove the ultraviolet cutoff we consider the
theory in two dimensions where it is renormalizable. '
There are coupling-constant, mass, and wave-function
renormalizations which, thanks to the asymptotic free-
dom of the model and to parity considerations, turn
out to be finite. The sole source of divergence in the
renormalized perturbative expansion is the appearance
of renormalons (as in the four-dimensional planar
model, and in contrast with full bosonic theories
like @q, which have also instantonlike singularities
preventing the direct summation of the perturbation
series).

Thanks to asymptotic freedom the renormalons do

not prevent the construction of the theory. More pre-
cisely, the renormalized perturbation series (say in the
Bogoliubov-Parisiuk-Hepp-Zimmermann scheme of
subtraction at zero external momenta) can be reshuf-
fled into an unrenormalized series whose bare cou-
pling shrinks with the ultraviolet cutoff at the same
rate as the radius of convergence of the bare series.

In fact we work in the reverse way; starting from the
correct Ansatz for the bare coupling A. as a function of
the cutoff (which has to include the effect of the first
two nonvanishing terms in the P function), we prove
that the corresponding bare series converges for any
cutoff, that the sum has a limit as the cutoff tends to
infinity, and that the corresponding renormalized cou-
pling is finite, nonzero (hence, the theory is not trivi-
al). More precisely we can identify the theory con-
structed in this way with the Borel sum of the renor-
malized series (with renormalized finite mass and field
strength) .

Our main tool is the phase-space analysis which we
used2 to construct the infrared limit of massless @44,

see also Gawqdzki and Kupiainen. However, the
analysis here is simpler since there is no need to in-
clude a (nonperturbative) control of the "large field"
regions responsible for the divergence of the bosonic
perturbation expansions.

The model. —The bare mass is fixed to 1, and A is a
compact box in R, while p is the ultraviolet cutoff in-
dex. The Lagrangian density is

~= 4 ~A+ 2 (AA) + 2 ~t(A4)'.
where A. & 0. The fermionic propagator with exponen-
tial cutoff is (for some M & 1)

5 (x —y) = J exp[ip(x —y)] exp[ —2p M ~+' ]d p
p+ 1

P
p +1

where we used two-component spinors and

0 1 i 0
0 ~ 'Yi= 0; P =po'Yo+pl'Yl'
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we have

[
pa pot) [pe) pjef 25~18 ~

It will be convenient to split Sp into two parts:

&p(x —y) =„t&p(X —t) B,(t y—) d't,

where

& (p) =
2 2, 4 exp[ —p M &+' ], B(p) =

(p + m ) I (p2+ m2)1/4

Then the 2p-point function +2~ A ~ for the theory with bare coupling constant il.~ is defined by

+2,A, (yl ~ y zl ~ ~ z, ) = ~2, A, , (yl.

where Z is the normalization and

(A )n
,(y, . . . , y,;, . . . , ,)= $ '

„i p(yl) y(y) j( 1) j(,)[ (jq)2( )d' ]"
n=0

r

(g ) ~ yl ' ' 'yir XIXI ' ' 'XnX~
d x1 ' ' ' d xn

py! ~~ ~] ' ' '4p X&xi ' '
Xn&n

where

—= det[S (u, —I ) ].P l J

Using Gram's inequality and the symmetric form of
the determinant in Eq. (I) one can bound („') byJ
&, I I 3 (u, , ) I 12 I I B(u;, ) I 12. Hence the radius of
convergence of S2p ~ ~ as a power series in X~ is infin-
ite.

The convergence of the bare series. —To remove the
cutoffs we split the propagator and thus the fields into
momentum slices (the ith momentum slice corre-
sponding to momenta of size M'). In each slice i we

perform a cluster expansion in squares of side M
This is equivalent to a partial development of the
determinant in Eq. (1). To preserve its symmetric
form we apply the cluster expansion separately on each
half A and B of the propagator. If we perform now a
Mayer expansion, the normalized Schwinger function
is a sum of products of polymers. The polymers are
built out of squares; two squares of the same size can
be joined by an explicit propagator; a square of size
M 2' contains all the ith frequency fields localized in

it. This expansion has only a finite radius of conver-
gence in X~, since to converge the Mayer expansion re-
quires a small factor per square. In fact we prove the

)+6K;, (2)

where 5X; is the sum of the coupling-constant counter-
terms in the slices p, p —1, . . . , i, which are not al-

ready in 5~~, . . . , 6~;+ i.
The above sums are absolutely convergent. We

shall use the counterterms to renormalize the four-
point subgraphs in the following way: We use the
above relations to 1ower the index of the coup1ing con-
stant of a vertex as long as it is strictly bigger than the
index of its fields; we thus renormalize the four-point
subgraphs whose internal lines are of higher momenta
than the external fields hooked to it.

Since

!
following estlIT!ate:

Theorem I.—The radius of convergence r satisfies

r, ' ~ —p21nM~+ (p, /p2) lnp+~
for some numerical constant K, where p2 and p3 are
the usual coefficients of the P function (in particular

P2 ( 0).
The renormaiization —Let . us start with P, '= —p2P

x lnM i'+ (p3/p2) lnp + c with c large enough. We
write P = ~p ]+Bop where 5A. is the sum of the
coupling-constant counterterms in the slice p. More
generally,

SX =p & lnM+ (p3 —p22lnM)A. ,3lnM+ 0( A) 4+ O(e '),

one can prove that A;
' behaves as p2lnM'+ (p3/

p2) lni+c, with c, uniformly large and bounded. By
power counting one can prove inductively that such an
expansion is convergent (we follow the techniques of
Feldman et al. ,

~ and hence obtain Theorem 1. The es-
timates being uniform in p, the limit & of the

Schwinger functions A as p ~ exists. This limit
satisfies obviously all Osterwalder-Schrader axioms by
standard arguments.

Identification with the renormaiized series of the Gross
%eveu model. —We can in the preceding development
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subtract and add the zero-momentum value of the
two-point subgraphs and obtain a new development
with renormalized two-point subgraphs and mass and
wave function insertions. We obtain in this way a new
propagator S„„.

We invert the relations of Eq. (2) and obtain a
development where X~, . . . , Xt are functions of A. o, the
propagator is S„„which we consider as independent of
A. p. Let A. be the value of the amputated truncated
four-point function at zero momenta: X= Xo —p2Xo
+ (a convergent series in X, . . . , A, o). We invert this
relation and consider now the theory as a function of X

(with propagator S„„independent of A ).
Theorem 2. —A is a c function of X and its Taylor

series is the renormalized perturbation expansion of
the Gross-Neveu model with propagator S„,„. More-
over for Reh. ) 0 and ~X~ small enough, S is an ana-
lytic function of A. and is Borel summable, i.e. ,

g ~ )tr~ ~ &~[g(1)]n) n+t
i=0

where n; is the coefficient of A.
' in the Taylor series of

To prove this we have just to complete for each ver-
tex and each i the expansion of A. ; with Eq. (2), this
time independently of the momenta of the fields of
the vertex. To prove the Borel summability we stop

the above procedure as soon as we have obtained all
the terms of degree in A. less than or equal to n, and
estimate the rest. In the rest we have produced n

counterterms corresponding to four-point subgraphs
whose internal momenta are smaller than the external
momenta; each such counterterm is 1ogarithmically
divergent in the ultraviolet cutoff, thus logarithmic in
the momenta of its fields. By the usual renormalon
mechanism n logarithms give an n!.8
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