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Comment on “‘Solitons in Superfluid 3He-4:
Bound States on Domain Walls”’

In a very recent paper,! Ho, Fulco, Schrieffer, and
Wilczek (HFSW) have studied the effect of solitons on
the quasiparticle spectrum in 3He-4. They find that
bound states exist with the possibility that some states
have zero energy. These results are due to the ex-
istence of two nodes for the gap on the Fermi surface.
The effect of these nodes has already been considered
previously?™ because of its importance for the statics
and the dynamics of 3He-4, and conclusions similar to
those of HFSW have already been reached.? Here we
want to comment on the physical significance of the
HFSW results.

The existence of bound states is not related to the
presence of topological solitons in the sample. Bound
states are linked to local properties of the sample and
not to global ones. They are due to textural inhomo-
geneities in the anisotropy axis 1. As such they exist in
any sample because the boundary condition of 1 per-
pendicular to the surface makes it impossible to have a
completely homogeneous sample. It is fairly easy to
understand why any bending in the 1 field produces
bound states. Quasiparticles with fixed p travel along
straight lines parallel to p in the quasiclassical approxi-
mation. A quasiparticle with p =1(M) can have a very

YI(r) = (/™Y 2)[(1+ E/ E)V2f,(p) — i(1— E/ E))V2f,_1(p)]

and 4= (y1)*, where f,(p) is the normalized eigen-
state of the harmonic oscillator and p= (a/&)V2(z
—2,)/P,. The low-energy states are localized around
z, in a region of size (¢/a)'? large compared to ¢ but
small with respect to 1/a which justifies the lineariza-
tion of the order parameter. It should be noted that,
although |p|=pr in the above wave functions, the
whole low-energy spectrum is affected by the trapping
of the excitations and corresponds to bound states,
which are not confined to a two-dimensional manifold
in momentum space. The set of quantum numbers p
of the free quasiparticle is replaced by the set (p,n)
with the corresponding modification Eq. (1) of the
spectrum.

Because the bound states are localized in narrow re-
gions, the above spectrum goes basically unmodified
for a general texture. A main consequence? is the ex-
istence of a nonzero excitation density of states at zero
energy N(0) = Nyavg/2A due to the zeroth level. This
results in a finite normal density at 7=0 and a corre-
sponding p;=p. We note that the existence of zero-
energy excitations with nonzero density of states can
be shown® to be independent of the gap linearization.
Finally the lack of inversion symmetry and the corre-
sponding quasiparticle current are already present
in the C-curll term of the standard gradient expan-
sion. This is quite analogous to the situation created
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low energy since the gap is almost zero for this value
of p. But such a low-energy quasiparticle cannot go far
from point M if the 1 field lines bend away, because at
a nearby point M’ we will have 1(M’)=p and the gap
at M’ will be too high for quasiparticle p to reach M’ in
the classical approximation. Therefore this quasiparti-
cle is trapped around M which can be anywhere in the
sample and this trapping causes bound states.

Bending is the dominant® source of bound states and
it appears impossible to avoid it in a real sample. Lack
of bending, a= (1:-V)I=0, means that the field lines
are straight lines which is usually incompatible with
boundary conditions. In this respect HFSW’s case a is
rather peculiar since there is no bending. In case b
bound states are due to bending. The analysis of this
case can be simplified if we note that, rather than a
sharp wall, we have in any actual sample a texture with
a typical length scale 1/a long compared to the coher-
ence length ¢ =vg/A. For a given P, the order param-
ter can be linearized? around the zero z, of its real part.
This leads to the following low-energy spectrum? 3:

Eo=Ap-ax1l, E,=(E$+2nAavg)?

n=1. 1)
For E(, this result agrees with HFSW’s case 4. The
corresponding spinor wave functions (e, yfe’P'T)
are given by

(2

[

by a superfluid velocity v;.
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