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Kine&ics of Formation and Mean Shape of Branched Polymers
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Branched polymers, the formation of which is controlled by a finite monomer supply or by ter-
mination, are studied with a Monte Carlo simulation. The radius-mass dependence of the two
models (in dimension from 2 to 8) is unequal, showing that branched polymers in toto cannot be
identified with "animals. " Study of the growth of mass with time helps to interpret the result.

PACS numbers: 64.60.Fr, 61.40.Km

The shape of branched chains is described by a mean
radius (R) versus mass (M) dependence,

R —M M

The critical exponent vM is (assumedly) determined
by the dimension D alone; in view of Eq. (1) it should
constitute the reciprocal fractal dimension, v~= df
Common wisdom has it that the statistical behavior of
branched polymers corresponds to that of "animals, "
viz. , to an unweighted ensemble of distinct graphs
drawn from M bonds on a lattice. On this basis v~ has
been calculated' 4 for D from 2 to D, =8 (above D,
the chain becomes ideal). It seems to me, however,
that a blanket identification of branched polymers with
animals is open to the following criticism. The con-
struction of an ensemble of animals is at equilibrium
with respect to the bonds' rearrangement. But such a
condition is seldom, if ever, realized with actual
branched polymers. The latter are generally syn-
thesized with the help of a stepwise process: Bifunc-
tional or polyfunctional monomers become irreversibly
attached to current "growing tips" of the chain. The
formation of various topological structures is kinetic; it
is not clear whether these structures are weighted
equally, like in the equilibrium ensemble. It seems
therefore worthwhile to study the effect of definite
kinetic models on the distribution of topological struc-
tures and hence on the statistics of shape. One possi-
ble kinetics is that of unlimited growth. During a
given interval of time, all growing tips propagate, ei-
ther linearly or with branching (corresponding respec-
tively to the addition of a bifunctional or polyfunction-
al monomer), which leads to an exponential increase
of M with the time. Such growth would overfill the
space and exhaust the monomer supply. Hence sus-
tained growth necessarily involves some limiting
mechanism. Two simple kinetic models are studied
here. In the first model S, growth is limited by a fixed
rate of supply of a (homogeneously distributed) mono-
mer. In a given interval of time not allbut only a fixed
number of tips (say one) adds a bifunctional or tri-
functional monomer. This number is assumed to be
randomly distributed among the current set of G tips.
As a result of branching, G increases with M, forming
an ever growing waiting list (with randomly ordered

R —E' (2)

R and t may be measured between a point on the chain

service!). In the absence of interactions, for D ~ D„
G —M. Model S corresponds to that adopted by
Redner. s In the second kinetic model T, growth is
limited through termination. A growing tip may either
add a bifunctional or trifunctional group, with proba-
bilities P& and P2, respectively, or become terminated
with probability 1 —(Pr+ P2). (The termination may
be due to addition of a monofunctional monomer or to
loss of a radical. ) Sustained growth, for which branch-
ing precisely compensates termination, requires the
critical value Pf + 2P2 = 1. In the absence of fluctua-
tions this value would lead to a linear growth, viz. , to
G = const. Because of fluctuation, however, G will
nonetheless increase with M In the absence of corre-
lation between consecutive stochastic steps, G in-
creases as M' 2. Since G/M 0, the limitation to a
fixed rate of monomer supply should be immaterial
(anyhow, the algorithm described below fits that limi-
tation). For the sake of simplicity, the formation of
closed loops, through attachment of a trifunctional
monomer to a pair of growing tips, is disallowed with
both models.

The foregoing discussion repeatedly refers to a
"time" of growth of the branched chain. This may be
defined as follows. The chain starts to grow on a lat-
tice from an origin, at t =0. Nearest neighbors to the
origin may join the chain; those that do constitute the
shell t= l. In turn, nearest neighbors to the sites con-
stituting the shell t = 1 may join the chain; those that
do constitute the shell t = 2, etc. It should be stressed
that the next nearest neighbors to the origin do not
necessarily belong to the shell t = 2, etc. ; indeed the
growing chain may bend upon itself and arrive at a
next-to-nearest neighbor to the origin after an arbi-
trary (odd) value of t. Furthermore, in actual kinetics
(like models S and T), entire iso-t shells need not be
filled one after another in succession. Some branches
may grow faster (in real time) than others, viz. , take a
larger number t of steps from origin. The time t pro-
vides a length variable, which enables one to study the
mean radius versus length dependence, like in a linear
chain,
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and the origin, or, indeed, between any pair of points,
one of which may be taken as the "origin. " In the ab-
sence of loops the definition of a length t between a
pair of points is unique (in the presence of loops an
average of different pathways may be used instead).
The increase of Mwith t may be studied as well,

(3)

From Eqs. (1)—(3) it follows that v, =vMy, . If, as
here, the growth is not in iso-t shells, one should rnea-
sure y, ' from (t) —M '. The description of&/~,

branched chains in terms of t, v„and y, has been first
introduced by the author, in connection with a con-
struction of percolating clusters as "critically branched
chains. "7 It has been adopted in several subsequent
studies of percolation and of animals. 8 (Some of these
call t the "chemical" or "topological" distance. ) In
what follows the comparison between models S and T
relies to a large extent on the measurement of the t
dependence.

Samples of branched polymers corresponding to
models 5 and T have been constructed with the help of
Monte Carlo simulation. A choice is made of a defin-
ite value of P2 (0.25 in the experiments reported
below). This fixes P~=1 —P2 and P&=1 —2P2, with
models Sand T, respectively. Three lotteries are made
at each step. The first picks one out of a current set of
growing tips. The second, with P~ and P2, determines
whether one or two bonds grow from that tip. With
model T, termination, with probability 1 —P& —P2,
constitutes a third possibility. If the choice falls on the
addition of two bonds to a tip, these are added one
after the other in immediate succession. A third lot-
tery determines the bond s direction in D-dimensional
space. Reversal, or an overlap of two bonds growing
from one tip, is excluded from the lottery. The ends
of the bonds constitute the new tips. If a new tip falls
into an unoccupied lattice site, the growth continues.
If, however, it falls into a site which is already occu-
pied by a preceding chain segment, violating excluded
volume, the entire construction is discarded and the
process restarted from the origin. Such procedure
leads to "sample attrition, " whereby the number of
the successful chains decreases exponentially with M
To offset this difficulty, use has been made here of
the standard "sample-enrichment" technique, which
avoids the restarting from origin. This helps to extend
the maximal value attained, M,„,by about thrice as
much. Beyond that point the sample enrichment be-
comes unstable: Almost all trial chains fail to attain
M,„and the very few that do are essentially replicat-
ed many times over, which leads to poor sampling.
Samples of 2QQQ —10000 chains have been constructed,
with M,„ranging from 15Q to 2000, as D varies from
2 to 8. Here the dependence of R and (t) upon M is
studied in chains which propagate to an indefinitely

large M Hence "terminal" cases, in which the
number of tips falls to zero at M' (M,„,have been
excluded from the sample. (Alternatively, the ex-
clusion has been extended to M'=10M,„,without
any marked consequence. ) The exclusion causes an
incomplete sampling of fluctuations, whence gT need
not be equal to precisely —,', even at D ~ D, . In order
to discern an inhomogeneity of the segments' density
with respect to the origin, the radius-mass exponent is
measured in three different ways: (i) vMg has been
determined from the average radius of gyration of M
segments; (ii) v~o has been determined from the
average square distance of M segments from the origin;
and (iii) a fractal dimension, df, has been determined
with the help of a recently proposed technique, with
which one picks a segment at random and measures
the radii R (M') enclosing its M'=1, 2, etc. , neigh-
bors. '0 Since the chain does not grow in iso tshel-ls,
y, ' has been determined from (t) vs M [cf. after Eq.
(3)], while v, is calculated from vM o/y, '. A branch-
ing exponent g, defined through G —M, has been
determined as well.

The results are displayed in Table I; superscripts 5
and T denote the two models. The ideal chain,
without the excluded-volume restriction (constructed
in D =8), is denoted by L The following observations
can be made.

(a) Branching. In the abs—ence of an effect of ex-
cluded volume, we expect that g = 1, while g should
be approximately equal to —,

' (approximately, because
of the aforementioned incomplete sampling of fluctua-
tions). This is borne out by the results. As D de-
creases, excluded volume favors more linear chains,
hence g decreases.

(b) (t) vs M. —Conversely, y, ' is minimum in the
absence of excluded volume; as D decreases, y, ' in-
creases towards 1, corresponding to linear topology.
Model T obeys very well the equation y, '=1 —g,
which has been derived recently for branched chains
growing at criticality. " Very clearly, I/y, T) I/yP at all
D, which indicates that model T is always more nearly
linear than model S. This disparity may be traced to
the kinetics of formation. With model T there is no
overproduction of tips (G/M 0). With model S,
however, there is a vast overproduction, and growth
proceeds through random access to a fast-expanding
waiting list of tips. This results in the formation of a
large number of relatively short branches, viz. , a
bulky, as opposed to linear, topology. In addition, be-
cause of repeated random access to the waiting list,
monomers are more likely to join tips created at early
stages of the kinetics. This should give rise to a rela-
tively denser distribution of segments around the ori-
gin.

(c) Radius mass. —The bulky topology of model 5 is
revealed by the values of the radius of gyration; thus
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TABLE I. Monte Carlo results (in dimensions D= 2 to 8 and for the ideal chain I) for exponents g, I/y„v~0, and vMg,
describing, respectively, the increase with mass M of the branching, of a mean time (t), of a mean radius with respect to the
origin, and of the radius of gyration. The additional exponents 1/df and v, describe a fractal dimension (Ref. 10) and the
radius-time dependence, respectively. Superscripts Sand Tdenote present models Sand T. Estimated error is 0.01—0.03, larg-
est with gr and with v~~ 0, v~~g, and I/dfs at highest D and for I It e. stimates statistical scatter and (more importantly) the varia-
tion of the exponents' value, depending on the portion of the log-log curve used for their determination. Values of the
radius-mass exponent for animals (Refs. 2—4), vent', are added for comparison.

gS I/y s I/y T
VMO

s
VMg I/dfs VM, O

T T
VMg I/dfr V

ani
M VSt V

T

0.83
0.91
0.96
0.97
0.98
0.99
0.99
1.0

0.25
0.34
0.38
0.41
0.44
0.46
0.46
0.46

0.57
0.46
0.38
0.33
0.30
0.26
0.24
0.20

0.74
0.66
0.63
0.60
0.58
0.54
0.54
0.52

0.44
0.32
0.24
0.20
0.17
0.14
0.13
0.10

0.57
0.42
0.32
0.26
0.23
0.19
0.17
0.13

0.57
0.42
0.34
0.30
0.27
0.24
0.23
0.22

0.62
0.47
0.40
0.35
0.31
0.29
0.28
0.26

0.62
0.47
0.40
0.35
0.31
0.29
0.28
0.26

0.63
0.50
0.43
0.38
0.35
0.32
0.30
0.28

0.64
0.50
0.42
0.36
0.32
0.28
0.25
0.25

0.76
0.70
0.62
0.61
0.56
0.53
0.54
0.50

0.84
0.71
0.63
0.58
0.54
0.54
0.51
0.50

v~g & vMg at all D. Furthermore, with model S the
values of vMso are significantly lower than the corre-
sponding vMs, which indicates that indeed, as M in-
creases, the packing of segments around the origin be-
comes increasingly dense. At highest D and for I, the
convergence with M is extremely slow and the very
small values found for v~o and v~g possibly should
be even smaller; indeed their ultimate convergence
towards 0 cannot be ruled out. With model T,

vitt 0 ——vMg, which indicates the absence of an appreci-
able inhomogeneity at the origin.

(d) A fractal dimension (cf. Ref. 10).—df is mea-
sured over M' neighbors to a segment, without refer-
ence to the actual stepwise growth of M This effaces
the singular role of the origin in model S. Thus the
values of I/dfs are comparable with vasss, or higher
than that. (df ' listed in Table I have been measured
with respect to segments picked at random; df ' mea-
sured with respect to the origin, though expected to be
smaller, turn out to be equal to within experimental
accuracy. ) The values of I/de for model Tare approx-
imately equal, as they should be, to v~0 and vMg.
(Still 1/df seem to be slightly but consistently
higher. '2) Altogether, the radius-mass exponents for
model Tare similar (possibly a little smaller at low D)
to v~n' calculated for lattice animals. 2 4

(e) Radius time The valu. e—s of v, support the ex-
pectation that for I, v, = 0.5, like in a linear chain. The
convergence of v, and of the other results towards
their limiting values at I suggests that D, = 8 for
model T and higher than that for model S. As D de-
creases v, for both models increase equally and only at
D=2, v &v

(f) Other results. —Redner'ss v for model S agree
approximately with the present I/dg, both having been
measured in a manner which obliterates the singularity

of the origin. y, for animals at D=2, 3, and 4 (mea-
sured as percolating clusters at p ((p, ) 8' agree very
well with the present results for model T.

In conclusion: First, it appears that the kinetics of
formation indeed affects the distribution of topological
structures and consequently the mean shape of
branched polymers (cf. a similar recent finding for
gelation'3). The applicability of animal exponents
should be therefore limited to certain branched poly-
mers only, notably to those not synthesized in an ir-
reversibly stepwise fasion and also perhaps to those
that are so synthesized but, like model T, grow without
overproduction of tips. Second, models S and T
represent two extremes, of a great overproduction of
equally accessible tips and of a complete compensation
of growth by termination. Actual kinetics presumably
exhibits intermediate types of behavior. Finally, the
present interpretation of simulation results relies on
the measurement of g, of y„and of the singularity of
the origin, in addition to a mere determination of vM,
"time" emerges as an important linear descriptor of
the topology of branched chains.
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