VOLUME 54, NUMBER 13

PHYSICAL REVIEW LETTERS

1 APRIL 1985

Continuum Percolation of Rods
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We determine the aspect-ratio dependence of the critical percolation threshold for various sys-
tems of rods. An exact expansion, due to Coniglio et al., tests the conjecture that the threshold is
proportional to the inverse of the expected excluded volume. We confirm the conjecture, and show
that the proportionality becomes equality, for isotropic rods in three dimensions, in the slender-rod
limit. In this limit, the critical region in which nonclassical exponents are valid vanishes.

PACS numbers: 64.60.Cn, 05.40.+j, 71.30.+h

Percolation problems involving anisotropic objects
have broad application to the connectedness (hence
conductivity, elasticity,. . .) of real, disordered media.
Though there is an extensive literature on thermally
driven phase transitions in systems of anisotropic parti-
cles,! the percolation transition has only rarely been
treated, by experiment? and simulation®’. In this pa-
per, we use a cluster expansion®? for the critical densi-
ty, pp, to derive analytically the dependence of the per-
colation threshold on particle anisotropy. The discus-
sion is restricted to rodlike particles (with aspect ratio
r/L and orientation in space described by a director
v), to focus on the recent conjecture’ that

Pp ( Vexc>—lr (D

where V. is the excluded volume!® about one of the
particles. The expectation value is taken over all al-
lowed particle orientations and sizes in an orientation-
ally disordered, polydisperse system. This conjecture
was suggested to the authors of Ref. 8 by a similar ap-
proximate law for lattice percolation,!! and is support-
ed by Monte Carlo evidence.*®7 Our principal result
is that the percolation threshold is given by the inverse
of the excluded volume for the limiting case of long
rods with an isotropic distribution of angles. In this
limit of r/L — 0, the size of the ‘‘critical region”
where the exponents are nonclassical vanishes as well.

For anisotropic objects, the study of the percolation
threshold is of interest since its value can span a large
range as a function of particle anisotropy and/or orien-
tation. Through experiment or simulation, one ob-
serves systematic trends as these parameters are
varied. Analytically, one predicts these trends by ex-
ploiting symmetries of the density expansion for the
percolation threshold. These symmetries permit the
result of one threshold measurement to predict the
results of a class of experiments. An obvious applica-
tion is to optimize the net volume of an inclusion
which is required for percolation within a host medi-
um.

The analytic expression for p, was developed by
Coniglio et al.®?; it is a Mayer-type'? density series
based on work by Hill.1*> We apply the expansion to
the case of percolation of permeable objects. Experi-

mental systems of interest are not always composed of
permeable objects, but of globules with a hard core
which is surrounded by an effective ‘‘shell’”’ through
which an excitation (ionic conduction, diffusion of a
marker, . . .) may travel.'* For such cases, the ex-
cluded volume in the expression which follows is tak-
en as the excluded volume produced by the permeable
shells alone. One defines the effective two-body po-
tentials as follows: u*(r;;) =0 for rj, within the ex-
cluded volume about 1, and = co otherwise. Similarly,
u*(ry) = oo for rj, within the excluded volume about
1, and =0 otherwise. Thus objects 1 and 2 are
members of the same cluster if the center of mass of
object 2 lies within the excluded volume of 1; this oc-
curs if and only if their volumes overlap. (The unique
shape of the excluded volume will depend on the
choice of the center.) The excluded volume is not
necessarily proportional to the actual volume of the
shapes. Figure 1 shows a two-dimensional example,
the excluded area (volume) of the two T-shaped ob-
jects in a plane which are constrained to lie parallel to
one another. For these shapes, the area is 4 =2Le
while the excluded area is Ao =2L2+ 6Le. (This fig-
ure and its three-dimensional analog provide a coun-
terexample to the observation made in Ref. 7 that for
figures in parallel, Ve V.)

Given the definitions f*(r)=exp{—Bu*(r)},
fr(r)=exp{—Bu*(r)}—1, Coniglio etal® have
shown that

-1
Pp= EC‘;+(0,pp)p,;—2 : @)

i=2

In Eq. (2), C;* is an integral over products of the
f*.f* and is the percolation analog of the direct pair-
correlation function'>—the ‘‘direct pair connected-
ness.”’

At lowest order in density, the percolation threshold
is given by

pp: {62+}_1
- {ff+ (I‘lz)d3r12} “l= {Vexc} _1~ (3)

For a system with polydispersity or orientational disor-
der, we let a; represent the state (dimensions and/or
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FIG. 1. The excluded volume around a permeable figure
is constructed as shown. It is bounded by a perimeter con-
sisting of all possible loci of the center of a second figure
such that the two figures just make contact. Each two-
dimensional T-shaped object within this system of parallel
T’s has as its excluded area the region within the dotted
perimeter. The magnitude of this excluded area is
Aexe=2L?+6Le, where L is the long dimension, and e the
short dimension of each crosspiece which forms the T.
Since 4 =2Le, it is possible to create figures with a diverg-
ing excluded area, but a finite area. This is analogously true
of the volume and excluded volume of three-dimensional T
figures (which are imagined to extend into the paper a uni-
form depth).

orientation) of particle i. If P(a;) is the weight of this
state, then to lowest order,

pp = ZP(al)P(az)ffaTaz d*ryy

a,a,
= (Vexe) ™1 4

Equations (3) and (4) show that at lowest order, pp is
sensitive only to the magnitude of the (expected)
volume around an element. For many regular, convex
elements (those called ‘‘centrosymmetrical’’ by On-
sager!®), the approximation (3) predicts critical
volume fractions ¢,=Vp, which are identical:
b, = 1/29in d dimensions. Empirically3 this underesti-
mates ¢,, which is expected since C," is an overesti-
mate of the complete direct pair connectedness. How-
ever, we show below that for long thin rods, the
threshold is given to a very good approximation by the
lowest-order term.

A system of randomly oriented spherocylinders with
varying aspect ratios was simulated in three dimen-
sions by Balberg, Binenbaum, and Wagner.® They
have noted that for cylinders of length L and caps
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FIG. 2. Small-r data from Fig. 1 of Ref. 6. We have plot-
ted p,{ Vexc(r)) vs r. There is, for this range of r, a sys-
tematic deviation from the excluded-volume rule. In this
limit r/L — 0, the plot is predicted to obey this rule and ap-
proach a constant value, unity.

of radius r, V=wr’L+4wr3/3 and V., =8V
+4L?%r(siny), where v is the angle between cylinder
axes; (siny) =m/4 for an isotropic distribution of an-
gles.” At lowest order [Eq. (4)], the density expansion
yields p, = 1/4L%r (siny) plus terms of higher order
in r/L which we neglect in the limit /L — 0. The
configurational integrals for the higher order C,-+ are
difficult to calculate for all but the simplest shapes.!®
However, Onsager has estimated the order of magni-
tude for a term (in the context of a thermal problem)
which corresponds to C;' for percolation. In the iso-
tropic case, he found!? that to lowest order in r/L,

(C3 Yo r3L31In(L/r). 5

Note that this term, which makes a vanishingly small
correction to p in the limit /L — 0, is not of the func-
tional form ( V..) ~' [which to a consistent order in
r/Lis (L%r +8r2L) 1],

We have applied similar arguments to the general
terms in the density expansion and find the following:

(i) Logarithmic factors in L/r will appear in terms of
all orders, since these accompany integrations of the
form ff13f23‘ c d3r13' ++. Thus, itis likely that Pp is
not simply proportional to {V.,.) ~! as conjectured in
Ref. 7, but can have other functional dependence on
r,L.

(ii) An upper bound exists on the scaling behavior:
(6,13)oc(é3+)(rL2)"+.... (6)

Thus, we find that for isotropically distributed
cylinders with r/L — 0, all terms in the series for p,
vanish in comparison with the first, (C," ). In this
limit, we find that p, = 1/7 L?r.

This prediction for p, can be checked against the
data of Ref. 6. In Fig. 2 we have replotted the data of
their Fig. 1 as p,mL2rvs r. For p,a ( V,,.) ~1, the plot
must be constant; our prediction in the limit r/L — 0
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is that the constant is unity. However, Fig. 2 shows
that in this range of /L there is still a systematic devi-
ation from the excluded-volume rule. It seems that
smaller aspect ratios are required to attain the r/L — 0
limit.

For situations in which the distribution of stick an-
gles is not uniform, we find that the vanishing of
higher-order terms with r/L is still approximately
valid. So long as the probability for a stick to lie within
any chosen, small steric angle ¢ is of order ¢/4m,
(C;*) for i>2 will still vanish as /L — 0. Thus,
pp= +L?r (siny) for near isotropic as well as isotropic
angular distributions.

The prediction (1) for isotropic sticks stands in con-
tradiction to a recent argument!’ which suggests that
ppe< 1/L3. (The argument seems to rely on an in-
correct calculation of the rescaling of p, under the au-
thors’ chosen transformation.) Monte Carlo evi-
dence**® uniformly supports the excluded-volume
prediction, Eq. (1).

Another consequence of the vanishing of higher-
order terms in the density expansion is the large range
of applicability of mean-field behavior for the critical
exponents. The susceptibility/mean-cluster-size ex-
ponent for this rod system is determined by®

S=(1/(=p{Z G pi=2)). @

In the limit »/L — 0, the higher-order terms in the ex-
pansion are negligible for some p outisde of a small
neighborhood about p=(C,) ~!. Equation (7) im-
plies that outside of this neighborhood of p» which
shrinks with r/L, the classical exponent, y=1, is ob-
served. One can show in a similar way that the other
exponents take on their classical values in this region
as well. Though the mean-field critical point itself
scales as 1/L?r, we find that if Ap is the neighborhood
about p, in which a nonclassical exponent may exist,
then Ap/p,— 0 as r/L — 0. Physically, if we imagine
L growing as r shrinks (which is consistent with, for
example, a constant cylinder volume) each cylinder
may interact with others whose centers lie increasingly
far from their own. Insofar as a divergence of L may
be interpreted as a divergence in the range of interac-
tions between the cylinders, a mean-field theory is ex-
pected to be exact.

In addition to the case of rods with random orienta-
tions, we have used Eq. (2) to predict p, for several
other cases and have compared our predictions with
recent Monte Carlo simulations. These are discussed
in detail elsewhere.!® (In the two-dimensional cases
below, the excluded ‘‘volume’’ is understood to be an
excluded area.)

(1) Rods in two dimensions with two possible orien-
tations * a: The distribution which admits this angu-
lar variation is P(y) =p38,.,+ (1—p)&_,,. A natural
transformation to consider in such a system is a change
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in angle: P(y)— P(y/\). It can be shown!® from
Eq. (4) that if one performs a linear transformation'®
on each excluded volume which appears in Eq. (1),
then p,— (detA} ~!p,. (A effects the transformation
with respect to the center of mass of each object.) The
transformation of angles above is linear in this way,
and the determinant is sin2Aa/sin2a. Since this is the
ratio of excluded volumes before and after the
transformation, the excluded-volume rule is exact with
respect to angular variation. Monte Carlo data* for the
special case p = % support this.

(2) Rods in two dimensions with arbitrary angular
distribution: Scaling arguments on the C;* show that

ppe 1/L2, ®)

in agreement with Ref. 4.

(3) Rods in three dimensions with three orthogonal
orientations: Boissonade, Barreau, and Carmona® per-
formed a Monte Carlo study of fibers on a lattice
which were oriented at random, but constrained to lie
parallel to one of three mutually orthogonal axes.
They found that p,« 1/L2. At lowest order in p, a lat-
tice version of Eq. (2) supports this law.!® For the
analogous system in the continuum (permeable rods,
or rods with a hard core and permeable shell of com-
parable dimensions which are constrained to lie per-
pendicular to one of three coordinate axes), we find?®
pPpx 1/L%r. For sticks with a moderate aspect ratio, »,
there must be a correction to this rule which is lower
order in n (not higher as might be predicted from Ref.
17). The small-»n region of Fig. 5 of Boissonade, Bar-
reau, and Carmona is consistent with this correction.

In summary, we have shown that the density expan-
sion for the percolation threshold is a useful method
for finding the dependence of threshold on particle an-
isotropy. For long rods with random orientations, we
find that p, = ( Vexc) —! with corrections which vanish
in the limit r/L — 0. For other cases (two dimen-
sions, certain discrete orientations,. . .) pp is still pro-
portional to { Vey) ~! in the long-rod limit.

The pros and cons of using percolation to model the
sol-gel transition are discussed in the work of
Stauffer.?! A continuum (versus lattice) model with
the possibility of interactions reduces the number of
cons substantially. Our findings are consistent with
measurements of the gelation threshold for the rodlike
trans phase of 4BCMU,?? though in this system the
elasticity exponent is measured to be nonclassical.

Our findings are not consistent with the analysis of
conductivity data of Ref. 2 where the percolation
threshold for graphite fibers in an insulating matrix
was inferred to follow p,c 1/L3. This scaling law was
deduced from only four data points and it is possible
that the system was not in the asymptotic large-L/r
limit. In addition, attractive interactions between
fibers could lead to clustering. If the number of fibers
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in a cluster is independent of concentration, then the
clusters can be approximated by spheres of size L
which would indeed show a percolation threshold scal-
ingas 1/L3.

The authors would like to thank G. Grest, Y. Kan-
tor, K. Kremer, T. Witten, and B. White for helpful
discussions.
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