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Nonlinear Transmission of Zero Sound in Superfluid He-A: A Saturation
of the Pair-Breaking Attenuation Mechanism
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We have studied the marked transparency to zero sound observed in He-3 over a broad range of
temperature. This nonlinear effect is induced by sound excitation levels small in comparison with
the condensation energy. It is attributed to the creation by Cooper pair breaking of a nonequilibri-
um distribution of quasiparticles localized over a small region of the Fermi surface and relaxing to-
ward equilibrium at a rate typical of normal processes.

PACS numbers: 67.50.Fi, 43.25. +y

We have observed a very pronounced acoustic tran-
sparency effect in the 3 phase of superfluid He over a
broad temperature range at zero and medium (11 bars)
pressures which sets in as the sound-pulse po~er is in-
creased. The effect is particularly strong at low pres-
sure' and is absent from the previously reported stud-
ies of zero-sound propagation in He-3 at high pres-
sure. Such nonlinear wave-propagation phenomena
occur in a host of different physical situations. They
may reflect a coherence property of the medium as in
the self-induced transparency effect discovered by
McCall and Hahn. Another example of nonlinearities
is provided by the saturation of two-level systems in
optics4 or in acoustics. 5 Let us also mention the puz-
zling nonlinear features of sound propagation observed
by Polturak et al.6 close to the real-squashing mode in
He-8. In contrast with this last case, the nonlinear

behavior of the A phase occurs over a wide frequency
range and involves energies which are very small com-
pared to intrinsic energies of the superfluid (except
those associated with textures) . We shall ascribe
below the power dependence of the attenuation in
He-A to the creation by phonon irradiation of a siz-

able overpopulation of excitations localized over a nar-
row region of the Fermi surface. This localization is a
consequence of the anisotropy of the A-phase order
parameter. The resulting nonequilibrium state is
analogous to those already met in superconductors7
and provides an insight on the behavior of the super-
fluid under strong perturbation at high frequencies.

The experimental observations have been carried
out in the same setup as used previously to study the
transmission of sound in He-3 in the linear regime.
As the shape of the received signal turns out to be

power dependent, the commonly used concepts of at-
tenuation and velocity become inadequate. A fu11 ac-
count of the nonlinear regime requires a detailed
understanding of the distorted signal shape and an ac-
curate knowledge of the excitation power. These fac-
tors have been put under control as follows. As the
low-loss transmission lines to the ultracold transducers
are carefully matched to 50 0, the power reaching the
quartz crystal is reasonably well known. The im-
pedance mismatch between the line and the crystal
depends on parameters which have been measured
with use of transmission-line techniques or else in-
ferred from the crystal geometry and its acoustical
response function. 9 Both methods agree to about 20%
and give a knowledge of the cw power radiated into the
liquid to that accuracy.

In a steady state, the energy flux density of a plane
wave traveling in the liquid, @= c8', where 5' is the
energy per unit volume, is defined as'

@= (hp, ) '/m, c u3, (1)
where m3 is the He bare mass, v3 the volume per
atom, c the sound velocity, and hp, the chemical-
potential fluctuation in the wave. The energy of an
acoustic pulse traveling in the fluid can now be
evaluated if its envelope is known. Its initial shape
results in the convolution by the transducer response
function of the tone burst generated by the rf
transmitter which has a clean rectangular envelope of
duration 8 (4 p, s). The crystal response is governed by
an exponential ringing time constant ~ti (12.8 p, s at 0
bar, 6 p, s at 11 bars). This analysis yields a total ener-
gy per unit area in the sound pulse expressed as
E, =@(8—~it [I —exp( —8/r„)]}. In Fig. 1 is shown
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FIG. 1. Apparent attenuation o., vs total energy per unit
area in the sound wave packet at 0 bar, 14 8 MHz,
T/T, =0.578 (squares) and 11 bars, 44.7 MHz, T/T,
= 0.407 (inverted triangles). a, is defined as ln(Ap/A&)/z,
A~ being the peak amplitude of the signal, A() a calibrated
reference level, and z the sound flight path (0.4 cm). The
solid curves are obtained from theory as explained in the
text.

the nonlinear behavior of the apparent attenuation
coefficient a, at fixed temperature as E, is increased.
The onset of the nonlinear regime occurs at very low
E„3to 4 orders of magnitude below the level at which
heating effects begin to be felt, i.e., minute with
respect to the superfluid condensation energy. This
onset energy is much smaller at 0 bar than at 11 bars
although the values of r0/b, o(T) are comparable. We
have used sequences of two successive pulses to probe
the remnant of the transparent state. Even with time
intervals as short as 100 p, s, no trace of memory could
be detected in the conditions of Fig. 1. This double-
pulse sequence places an upper limit of —30 p, s on
the relaxation time of the excited state and serves as a
further check that heating effects were not noticeable
in these experiments.

In order to give a framework in which this observed
nonlinear behavior can be analyzed quantitatively, we
have constructed a semiphenomenological model
based on the following considerations. The satura-
tion-curve shape shown in Fig. 1 indicates that damp-
ing is dominated by a single mechanism. This
mechanism lies most likely in the breaking of Cooper
pairs as shown in Ref. 8. The physical process respon-
sible for the appearance of transparency resides in its
saturation: The absorption of sound by creation of ex-
citations is balanced by the stimulated emission due to
the recombination of excitations into pairs. Textural
effects have been ruled out because (1) the nonlinear
state relaxes in a time comparable to (or smaller than)
the quasiparticle collision time, and (2) the magnitude
of the attenuation is approximately accounted for by

the pair-breaking mechanism.
Next, we take into account the fact that the incom-

ing phonon energy is small with respect to the max-
imum value of the gap, i.e., cu « b, o(T). This implies
that a small portion of phase space, defined by the
condition coz/4=E„= g„+4k h k

= hp(T) sin(k 1),
g„ is the kinetic energy counted from the Fermi level],
is involved in the pair-breaking process. This fact
brings about the two following consequences which
greatly simplify the theoretical approach. First, the
propagative aspect of the sound-wave perturbation is
unimportant because the wavelength is large compared
to the coherence length. We shall therefore work at
zero wave vector. Secondly, neither the shape of the
gap nor its overall amplitude b, o( T) are significantly al-
tered by the sound irradiation, even at fairly high sonic
levels. This is true because Ao(T) is linked by the gap
equation to the distribution of quasiparticles over the
entire Fermi surface, the larger portion of which is
unaffected by pair breaking. As for the shape of the
gap, its distortion would imply —apart from the unlike-
ly occurrence of high-order spherical harmonics —the
excitation of pair-vibration eigenmodes. This requires
frequencies higher than those used experimentally.
Besides, the observed nonlinear phenomena are clearly
nonresonant. We shall therefore take the gap struc-
ture and its value as constant.

To summarize, we look for the nonlinear response
of the quasiparticle system to a homogeneous effective
field Se(t) coupled to number-density fluctuations 5n
via a term he(t)bn, the superfluid parameters being
held constant. The external field is assumed to be of
the form Se(t) =A cosset, where A is a slowly varying
function of t on the scale of I/pp.

We then resort to the standard kinetic equation
theory2 and go over to the canonical Bogoliubov quasi-
particle representation: The off-diagonal part of the
equation describes pair breaking and, as long as the
pulse time scale is large compared to I/co, it can be
solved in the linear approximation. When the result is
carried back into the diagonal equation, which
describes the time evolution of the quasiparticle distri-
bution fk, we obtain after time averaging

Equation (2) is nothing but the Fermi's "golden rule"
in which transition probabilities for both pair breaking
and recombination are taken into account, with a re-
laxation term toward the Fermi equilibrium distribu-
tion fk involving the time I/I' t. Likewise, we intro-
duce a relaxation time 1/I'2 for the off-diagonal terms.
We assume that I 2/b, p is a small quantity and also that
I q and I 2 are independent of co and k. We can then
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|I, '+cB, S' = —P, (4)

in which 8' is now the slowly varying envelope of the
traveling wave packet. To close this set of equations,
we need first to reproduce the known linear regime for
which fk —fk and H = 2ntIc8', where the linear-
regime attenuation coefficient no is obtained directly
by extrapolation of the low-power data. We need also
to relate the effective field 3 to the isotropic perturba-
tion Sp, caused by the sound wave whose effect on the
superfluid is screened by molecular fields. In the low-
temperature limit, we expect the usual renormalization
of Bp, such that 2 =Bp/(I+FII). This Fermi-liquid
correction is also required to obtain the correct at-
tenuation in the linear regime. As Eo increases strong-
ly with pressure, it explains the experimental fact that
the attenuation is less easily saturated at high pressure.

Equations (2), (3), and (4) describe the departure
from equilibrium of the distribution function fk and
the nonlinear behavior of zero sound at high-power
level. Their general features are expected to hold
beyond weak-coupling theory. For each k vector, they
bear a close resemblance with the population-evolution
equations for two-level systems. 4 5 I I governs the dif-
fusion of quasiparticles and I 2 their recombination
into pairs. I 2 enters the equations as a normalizing
factor of A 2 and fixes the energy scale for the onset of
nonlinearities. Although analytical solutions of this
set of nonlinear integrodifferential equations can be
obtained in a few limiting cases, we had to perform a
numerical integration to calculate the signal shapes in
realistic situations. After adjustment of the outcome
of the simulation to the actual signals, we find
1/I I = 15 and 12 p, s and 1/I 2

——30 and 3.3 p, s at 0 and
11 bars, respectively, for the conditions of Fig. 1. I

&

and I 2, determined to about 50% only, have a magni-
tude characteristic of quasiparticle processes as was to
be expected on general grounds. From the magnitude
of I 2, we infer that only a relatively small portion of
phase space is deeply perturbed in the process and that
the energy 8' required to fully saturate the pair-
breaking mechanism at the frequency co remains small
with respect to the superfluid condensation energy.
This result agrees with the experimental observations
and with the initial assumptions of our model. It con-
firms the internal consistency of our approach.
Without additional information, we can now evaluate

replace 7rB(cu —2E„) by I,/[(cu —2E) + I', ].
Within this framework, the mean power absorbed

per unit volume H (t) = (t)t (Be)Bn ) is expressed by

I'zA b k 1 —2fk
t cc (3)

4
k Ek (~ —2Ek)

The energy density in the zero-sound wave @ defined
by Eq. (1) propagates along z according to the equation
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FIG. 2. Measured and calculated apparent attenuation vs
temperature at 11 bars for three excitation levels: 44x 10
(inverted triangles), 7.0&&10 2 (lozenges), and 2.8&10
(asterisks) in n J/cm2.

a, as a function of temperature. We use the parame-
ter values determined in the physical situation corre-
sponding to Fig. 1 as a starting point and assume for I

&

and I 2 a (T/T, ) dependence characteristic of quasi-
particle relaxation rates in He-A. " The outcome of
this evaluation, shown in Fig. 2 for 11 bars, repro-
duces the observed variation of o., with temperature at
various power levels in a quite satisfactory manner.

This agreement brings additional support to the
physical picture that we put forward which lies midway
between a two-level-system description3 5 and the case
of nonequilibrium superconductivity: The two-1evel
systems are evoked out of the particle-hole continuum
by phonon irradiation and live for a time governed by
quasiparticle collisions. At power levels still higher
than those reported here, the agreement between the
model predictions and experiment breaks down. The
received signal is seen to refocus sharply and signifi-
cant phase shifts occur. The model leaves room for
the appearance of coherence phenomena but not for
changes in the phase velocity which may be interpreted
as a sign of local heating effects. The experimental sit-
uation becomes too complex to allow us to draw any
definite conclusion.
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