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in 3He and other Normal Fermi Liquids
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Calculations of the change in pressure and magnetostriction which are exact to second order in
the polarization are presented. From these effects it is possible to extract a combination of the
linear field dependence of the Landau parameters and effective masses from a thermodynamic
measurement in the normal phase of a Fermi liquid.
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Recently much effort has been directed towards
achieving highly polarized Fermi liquids by means of
rather novel techniques. ' These methods are all
designed to achieve high polarizations in relatively
small magnetic fields. High polarization is needed, for
example, to enhance the rather interesting phenomena
predicted for those systems. These include, among
others, the reduction in the effective mass6 8 for fully
polarized 3He and the suppression of superfluidity first
predicted by Bedell and Quader. 6 9 To achieve the
equivalent polarizations reached for liquid 'He in the
rapid melting experiments2 3 would require dc magnet-
ic field of the order of 40 to 100 T. This is larger than
the currently available dc magnets can produce. '0

In the currently accessible field range 10 to 20 T
changes in the usual thermodynamic quantities, e.g. ,
C„, the specific heat, K, the compressibility, and X, the
susceptibility, of liquid He, are expected to be
small. ' " It follows from thermodynamics that
changes in these quantities are all quadratic in 6,
where 6 is the polarization. Since the largest value for
5 in a 10-T field is only 4.4'/0, at the melting pressure
of 3He, the changes in C„, X, and K will be difficult to
observe. '2 Moreover, .direct information about the
linear field dependence of the Landau parameters and
effective masses cannot be obtained from these mea-
surements.

In this Letter I present some new and unexpected
results for polarized normal Fermi liquids. The results
I have derived show, for the first time, that it is possi-
ble to extract a combination of the linear field depen-
dence of the Landau parameters from a thermodynam-
ic experiment in the normal phase of a Fermi liquid.
In particular I have calculated the change of the pres-
sure and the molar volume (magnetostriction) exactly
to order 5 . The coefficient of the 5 term in these
phenomena has two distinct sources: The first arises
from the Landau parameters of the unpolarized system
and the linear change in the Fermi momenta, ktl, for
up spins, and, k„, for down spins. The other term
arises from the linear field dependence of the Landau
parameters and effective masses. " By making use of
thermodynamic arguments these effects are also
shown to be simply related to the density derivative of

the spin-fluctuation temperature, TsF, for small polari-
zations.

To obtain expressions for the pressure reduction and
magnetostriction I use the generalization, to finite po-
larizations, of the Landau theory of a normal Fermi
liquid. ' A considerable body of literature exists on
this subject. "' ' However, much of the results
that I will present do not appear in the literature. ' In
what follows I will outline briefly the derivation for the
pressure reduction and magnetostriction.

Here I consider a paramagnetic system with a
number density n= N/ V, where N is the number of
particles and Vis the volume, in a magnetic field B.
The change in the energy density, e =E/ V, is given
b 6, 11, 13 18

5e= Xe~o 5n~ + —,
' g f, hn~ Sn, „

PQ PcT, P c7

where hn~ = n~
—

n~ and n~ is the equilibrium dis-
tribution function in the presence of the field Bp. The
quasiparticle energy is defined such that

= 2Bp and ~„ t + ek t
= 2pp where pp and0 0 0 0

F F F F
Bp are the equilibrium chemical potential and magnet-
ic field, respectively. The Fermi momenta are defined
as kF =kF(1+o-5)', where o=+1 ( —1-) for up
spins (down spins). The polarization 5 is given by
5 =M /n, where the magnetization density' = M/ V
and M is the magnetization. The quasiparticle interac-

I

tion f, has three distinct components, t t, t g, and

j ) (e t t ), which characterize the longitudinal fluc-
tuations in the system. They reduce to the usual Lan-
dau interactions in zero field. ' (Note that in the
above and in what follows I have set h, kz, and the
magnetic moment of He equal to 1.)

For a uniform distortion of the Fermi surfaces the
change in the distribution functions is given by'8 '

Q n = 5e 5 (e ep~) 2 (5ek~ ) 5 (ek ep~),
F

(2)
where 5ek =N ' (0)5n and N (0) =kF m'/2vr~,

with m' the effective mass of spin o-. Since the
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second term in Eq. (2) is second order in 5n it will only contribute to the kinetic energy term in Eq (2). Substi-
tuting Eq. (2) into Eq. (1), I find'

56 = E
k~

5 n
T
+ 6

k~
5 n l + —,

' C T T 5 n
T

+ —,
' C 5 n l + fo 5 n

T
5 l (3)

where CT T =NT '(0)+ foT Cl l =Nl '(0)+ fol l, nT = —,
' (n+-&), and n J = —,

' (n —~). The quasiparticle
I

interaction is expanded in the angle between p and p', f, = g&f& PI(p p'), and only the I =0 moment contri-
PP

butes for uniform distortions. The pressure is given by P = —(BE/B V)~M = —e+ n (Be/Bn )~+~ (B&/B~)„
where P =Po+5P, and Po is the equilibrium pressure. After differentiation of Eq. (3) the change in pressure is
given by

5P=[' rrTCTT+ ' rTlCll+ nf Tl ]5~+[ nTCTT ~ rrlcll & ~ftl ]5~
The magnetic field is defined by 8 = (BE/BM)z T

= (Be/BM) „=80+ 58, where

58 = —,'(CT T —Cl 1)5n+ —,'(CT T+C» —f,' ' )5~.

(4)

Consider first the change in pressure at fixed densi-
ty, i.e. , 5n = 0. Since the number of particles are fixed
this is equivalent to keeping the volume fixed. Since
here I am interested in terms that are second order in

only the linear terms in the coefficient of the
5M(= n 56) term in Eq. (4) are needed. As shown

by Bedell and Quader9 the Landau parameters fo
and effective masses m' are to linear order in 5 given
by fo —fol T (1 boa.h), m' = m'(1 —aog), .and

fo = fo l, with fo and m' the zero-field Landau
parameters and effective mass. Substituting these into
Eq. (4) and integrating over b„, I find

p(a) —p(0}= —,
' n.Fra', (6)

where I = [1+Fo+a——,
' ——,

'
boFOT T ] and P(0) is

the pressure in zero field. Here Fo and Fol T and
eF= kF/2m' are the Landau parameters and Fermi en-
ergy, respectively, in zero field. The polarization is
given by the low-field result

b, = ( k'/n) = —', (8/T „), (7)
where TsF ——(1+Fo) TF. Higher-order corrections to
5 can be ignored since they would lead to higher-order
corrections to Eq. (6).

Magnetostriction can be defined as the amount by
which the density must change (for fixed N this corre-
sponds to a change in V) with polarization such that
the pressure remains constant, i.e. , 5P =0. From Eq.
(4) with 5P = 0, I find, after integrating, that

n(b)
1

n

n (1+F5 )~F

This they obtained' by using Eq. (7) to evaluate the
partial derivative (BA/BP)s. This simple relationship,
Eq. (7), between 5 and 8 comes from integration of
Eq. (5) at constant density. However, what I used was
the integration of Eq. (5) at constant field. To see this
I use Eq. (4) to evaluate (BM//BP) z, where

BM 3/2 BM
BP (1+F~) T„Bn

for small M (= nA). The partial derivative (BM/
Bn)s is then obtained from Eq. (5) at constant 8,

I

derivatives in Eq. (9), (B ~/BP)s and (Bn/BP)&, can
be determined from Eqs. (4) and (5). Keeping terms
to leading order in 5 will after integration give Eq. (8).
The size of this effect, e.g. , in 3He, is not as large as
the pressure reduction. The simple reason is that here
we are trying to change the density, whereas, the pres-
sure reduction is accomplished at fixed density. To
change the density we must overcome the large in-
compressibility of the liquid, and thus the screening
factor 1+ Fo appears in the denominator.

The result that I find for magnetostriction is related
to that found by Castaing and Nozieres. ' The result
found by Castaing and Nozieres' can be written as

SF 5 (1())
T 2

, B 2

n(a), r
n 1+F$ 2

(8)
Bn

(12)

where Fo and n are the zero-field Landau parameter
and density, respectively. This definition of magneto-
striction is equivalent to the one employed by Castaing
and Nozieres, ' who use the Maxwell relation

r f f

B~ B5 1 B~ ~ Bn (9)BB BP ~ n BP s n2 BP

where v= I/n is the molar volume. The two partial

Substituting Eqs. (11) and (12) along with (Bn/BP)s
into Eq. (9) yields, after integration, Eq. (8). That
these two expressions for magnetostriction, Eqs. (8)
and (10), are equivalent follows from the fact that 58,
Eq. (5), is a total differential. From this it follows that
(B28/Bn BM) = (B 8/BMBn) and for small polari-
zations this leads to the relation I = (n/eF)(BTs„/
Bn).
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The quantity (n/&F) (r) TsF/ t)n ) can be obtained
from experiment by use of the values of the Landau
parameters obtained from Greywall's effective
masses. 0 From this I can obtain the combination
a ——,

'
boFo~ 1 which ranges from —0.43 at saturated va-

por pressure (SVP) to —0.52 at the melting pressure
where n = 2.38 && 10 2 A . A direct measurement of
I can be obtained by placing the Fermi liquid in a rigid
cell and measuring the pressure change when the mag-
netic field is applied. In He at the melting pressure
this would result in a decrease of 1.5 mbar in a 10-T
field. Although this would be an interesting and easy
experiment to perform it will not, for small magnetic
fields, give us any more information than we would
get from the magnetostriction effect. This can then be
used as a check on the various microscopic theories of
polarized Fermi liquids.

In the theory recently proposed by Vollhardt2' this
combination, a ——,

'
h&F&& 1, would be identically 0

since there are no linear field terms in the theory. The
model of Bedell and Quader also does rather poorly
on this combination. For example, at SVP their
parameters9 give —1.3 and at melting this would be
—13.9. This at first appears rather surprising since the
theory of Bedell and Quader9 provides an excellent ac-
count of the density and field dependence of the linear
field splitting in the superfluid phase of 3He. 22 23 It is
important to determine why this theory works9 well for
the linear field splitting but rather poorly on the com-
bination a ——,

' boFot ~. This can be understood by ob-
taining estimates of bo and a.

Separate estimates of bo and a can be obtained by
making use of the forward-scattering sum rules" '6 for
scattering between t t and J f particles, keeping only
the I =0 and 1 moments of the interactions, and Eq.
(12). At SVP this gives bp = 0.17 and a = 0.3 and at
the melting pressure btj

——0.02 and a = 0.5. The
values of a obtained this way are close to those of
Bedell and Quader9; however, bo is off by an order of
magnitude at high pressure. This sum-rule argument
provides only a rough check on the parameters but
from this it is clear that bo is overestimated by Bedell
and Quader. 9 However, because of the sum-rule con-
straints bo does not couple very strongly into the linear
field splitting nor into the calculation of the coefficient
a. Thus, improvements in the calculation of Bedell
and Quader, 9 such as including the momentum depen-
dence of the quasiparticle interaction, will have a large
effect on bo but only a small effect on a.

In this Letter I have shown that it is possible to ob-
tain direct information about the linear field depen-
dence of a particular combination of the Landau
parameters and effective masses from a thermodynam-
ic measurement in the normal phase of a Fermi liquid.
This applies rather generally to any normal Fermi
liquid. In particular in He it has been shown to pro-

vide an additional check on the models for the polar-
ized phase of He.
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