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Equation of Motion of a Stringlike Dislocation
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A differential equation is proposed to describe the evolution of a screw dislocation in a continu-
ous medium under an externally applied displacement field. The derivation is based on the conser-
vation of energy and momentum and the neglect of radiation reaction and renormalizability: The
equation of motion must be such that it allows for a renormalization of the infinite self-energy and
momentum of the infinitely thin dislocation. The extent to which the result might hold for general
dislocation loops is discussed.
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An old question' in the theory of dislocation dynam-
ics in an elastic continuum is the following: Is it possi-
ble to determine the motion of a dislocation in a
prescribed stress field? How to find the displacement
field generated by a dislocation loop in a given arbi-
trary motion is well known2; it is, by use of an electro-
dynamic analogy, similar to solving Maxwell's equa-
tions for the fields given the sources. The motion of
the sources themselves, i.e. , point-charged particles,
under prescribed external fields is given, of course, by
F= ma where F is the Lorentz force if radiation reac-
tion is neglected. This equation was modified in a
Lorentz-invariant way by Dirac in order to include ra-
diation reaction, and he showed that the divergent
self-energy of a point particle could be regularized
through a mass renormalization. His use of advanced
fields was shown to be unnecessary by Teitelboim, 4

and a number of ambituities in the renormalization
procedure where later removed by Tabensky. 5 It had
also been previously emphasized by Feynman6 that
regularization of the action of a charged particle on it-
self meant that, at the classical level, the mass of the
particle could be considered as purely electromagnet-
ic. Feynman's approach was used by Lund and
Regges to show that in a theory of Nambu strings in-
teracting via an antisymmetric tensor field9 the action
of a string on itself could be regularized through a re-
normalization of the slope of the Regge trajectories,
alias the string tension.

Take now an infinite, three-dimensional, homo-
geneous, linearly elastic continuum of density p and
elastic constant tensor' cI kI. The dynamical variable
is a field u(y, t) representing the (small) displacement
at time t of a particle from its equilibrium position y.
A string-like dislocation loop is an infinite or closed
curve X(o-, t), o. being a parameter, with Burgers vec-
tor b. The field u is multivalued but its derivatives are
single valued and so are the energy and momentum of
the field which are, however, singular along the loop.
The idea is to think of the loop X(o., t) as the source
of the elastodynamic field u in the same sense that

point-charged particles are the source of the elec-
tromagnetic field, and to take them seriously as
dynamical objects in their own right.

A convenient form for the velocity and strain fields
generated by a dislocation loop in arbitrary motion was
found by Mura"

Bu /Bt= d3x'dt'G k(x —x', t —t')fk(x', t'), (I)
t)u /Bx"

r= J d3x'dt'G k(x x';t —t')—gk„(x', t'), (2)

where G is the elastodynamic Green's function and fk
and gk„are functionals of X(o-, t) that vanish every-
where except along the loop itself. These formulas are
remarkable as the slip plane does not appear, and they
are analogous to the Lienard-Wichert fields of a mov-
ing point charge. They give a precise meaning to the
statement that the dislocation loop acts as a source of
an elastodynamic field.

As was already said, strain and velocity given by (1)
and (2) are singular along the loop. At short distances
from it they are finite but large, and this means that
linear elasticity is no longer adequate and nonlinear ef-
fects have to be considered; moreover, for distances
comparable to the interatomic spacing the continuum
approximation breaks down and atomic structure has
to be taken into account. The following question then
comes to mind: Is it possible to sweep both problems
under some rug and retain a description of dislocations
as infinitely thin strings whose motion in an external
stress field is determined, say, by a differential equa-
tion of evolution? The answer is yes, with the as-
sumption that the energy radiated by the dislocation as
it moves is negligible compared with the work done by
the external stresses upon the dislocation. It is possi-
ble to endow stringlike dislocations with mass and
string tension of purely elastic origin at least, at the
level that is reported here, when radiation reaction is
not considered. This means that results derived from
the theory will be valid as long as accelerations are not
too large. On the other hand, insisting on a stringlike
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where the index zero means time component. Conse-
quently, the energy E and momentum P' of the field,

fO

E=J dxToo Pi J d3xTio

are constants of motion.
The total displacement due to a dislocation loop and

externally applied stresses in a linear medium will be
the sum u+ U of the displacements that each factor
would contribute if the other were absent. Corre-
spondingly, the energy-momentum tensor will be split
into three:

T=T+T +T, (5)

description of dislocations gives a scale-free theory
that should be applicable in widely different contexts
such as internal friction, '2 fracture at the laboratory'3
and geophysical'" scales, phase transitions, ' and any
situation where the relevant wavelengths are long
compared with atomic distances.

The starting point of computations is the action in-
tegral whose extrema give the equations of classical
elasticity:

1

S= d d3 ~ Bu 1 Bu'Bu"
2 ""'Bxi Bx'

Invariance under space and time translation imply the
existence of a locally conserved energy-momentum
tensor:

where T, (for self) involves only u, T (for mixed) in-
volves products of u and U, and T, (for external) in-
volves only U. Velocities and strains generated by the
external loads are supposed to be regular everywhere,
and T, will satisfy (3) identically. T, and T, howev-
er, are singular at the dislocation loop and the conser-
vation laws (3) have to be modified. This is done as
follows: surround the dislocation loop by a very thin
tube; outside this tube (3) will hold and energy and
momentum will be defined by (4). The self-energy E,
and momentum P,' will be very large for small tube
thickness. So, define the energy and momentum inside
the tube in such a way that its sum with E, and P,' is
finite. This sum will be called the energy and momen-
tum of the stringlike dislocation, it will be well defined
everywhere, and the conservation laws will provide
equations to find out how they change under the influ-
ence of an external field. In this way dislocations are
given an existence independent of the elastodynamic
field.

In the sequel the case of a screw dislocation is con-
sidered. The algebra is thereby greatly simplified while
retaining most of the relevant physics. '6 In this case

x(,.) =(r, (.),r, (.), ),
b= (0, 0,b),

the problem is one of antiplane strain, only the third
component of displacement is coupled to the disloca-
tion, and it is enough to take

u= (0, 0,u), Bu/Bz=0.

This simplifies (1) and (2) to

Bu/By'=bp, d d e, BG/By + bp„d d, (BX/B )(BG/Bt),

Bu/Bt= bp, d~ d~e„(BXb/B~)(BG/By ),
with el2= —62l= 1, Kli =622=0,

&(t —~ —p 'ly —xl)
4m@, G(t —v",y —X) =

ly —xl
where p, is the shear modulus and p the shear wave velocity.

According to the procedure outlined above, this dlslocatlon ls now surrounded by a thin tube From (3) and (4)
one has

r

(momentum outside tube) = d2Sb( T'b VbT' ), —(e—nergy outside tube) = d Sb( T VT ), —
dt dt

where d2S is the surface element of the tube and Vb is the velocity of the dislocation at time t. To evaluate (7)
the fields (6) are needed at close distance from the dislocation, say at y'= X'(t) + e' with e' small. Substitution
into (6) yields'

Bu
By'

bp ye be bpe, bA pg+ '
ln + (finite terms),

27r E' 4m. P'y'

Bu b Vg BE
2 GabBt 4m yE Be

ln + (finite terms),
4~p2y3
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where A' is the acceleration at time t, y2=1 —V2/P2,
5 is a cutoff implementing the requirement that radia-
tion emitted from one portion of the dislocation does
not affect the motion of another region, and

E2 ( V ' E)2+ (P2 V)2~2

The leading term in strain and velocity for short dis-
tances diverges like an inverse power, while the next
one diverges logarithmically. It is not unlikely that
this type of short-distance behavior will also hold for
more general dislocation loops.

The tube will now be taken as a cylinder of elliptical
cross sectionts E2= const. Substitution of (8) into (7)
gives the rate of change of energy and momentum per
unit length outside the tube:

m , BU= —p, be, b
V'

dt ' Byb'

The renormalization employed means that M should
be the same for all dislocations with the same Burgers
vector. Technically, the derivation is made possible by
the short distance behavior (9) which depends on the
locality of the Green's function G. This locality holds,
at short distances, not only for antiplane but also for
in-plane and three-dimensional problems. Thus, equa-
tions similar to (10) should be obtainable for edge
dislocations and for arbitrary dislocation loops. Work
along this line is in progress.

This work grew out of conversations held with
R. Madariaga on the shores of lake Corno at the Fermi
School of Physics. It is a pleasure to thank R. Taben-
sky for sharing this deep insight of field theory and
I. Schuller for kind advice. This work was supported
in part by the Departamento de Investigacion y Biblio-
tecas, Universidad de Chile, as well as the Fondo ¹

cional de Ciencia y Tecnologia, Chile.

= —p, be~, c
—phd~, V'

dP /dt= F', (10)

in which P'= MV'y ' is the momentum of the dislo-
cation with M being a parameter with dimension of
mass per unit length to be determined by experiment,
and the external force is

F~= p b e ~, (B U/ By') + p b e„V'(BU/B t ) .

The first term on the right is the usual'9 Peack-
Hoehler force, while the second was guessed by Eshel-
by2O on the basis of an analogy with lines of constant
electric charge. Similarly, the energy equation be-
comes

dE/dt = F V

with E = MP2y ', the energy of the dislocation,
meaning that the rate of energy change for the disloca-
tion is equal to the rate at which work is done on it by
external forces. These are the same equations obeyed
by a relativistic line of uniform charge.

Expression (10) is the announced evolution equa-
tion: It involves a mass M of purely elastic origin
which hides all the nonlinear behavior at the core.

dEs p, b SP dyln
dt 4~ E dt

dP p b2 QP d( V~y t)
ln

dT 4m p2 E dt

The self-energy and momentum diverge logarithmical-
ly when E 0. Now, postulate that dislocations are
objects (i.e. , strings) endowed with energy and
momentum proportional to y

' and y 'V', respec-
tively. This makes it possible to write the following
equation of motion for a screw dislocation:
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