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In irreversible aggregation processes without a gelation transition the cluster size distribution ap-
proaches a scaling form, c„(t)—s 2@(k/s). Usking Smoluchowski's coagulation equation we
determine the exponents in the mean cluster size s(t) —t' (t ~) and in the small- and large-x
behavior of the scaling function @(x). Depending on certain characteristics of the coagulation coef-
ficients, @(x)—x ' (x 0) or $(x) —exp( —x") (x 0) with p, some negative constant. In
aggregation processes with gelation a similar scaling form is obtained as t approaches the gel point.

PACS numbers: 64.60.—i, 05.50.+q, 64.75. +g, 82.35.+t

To study the kinetics of irreversible aggregation and
clustering phenomena, in particular the time evolution
of the cluster size distribution ck(t), Smoluchowski s
coagulation equation is one of the few available, and
also one of the most widely used, theoretical tools in
many fields of physics, astronomy, polymer physics,
colloid chemistry, atmospheric physics, biology, and
technology. ' 5 It reads

Ck= 2 g K(l,J)ctcJ Ck XK(k,J) Jc,
i+ j=k j=l

where the coagulation kernel K (ij ) represents the
rate coefficient for a specific clustering mechanism
between clusters of sizes i and j. We distinguish gel-
ling and nongelling mechanisms. In the former the
mean cluster size s(t) diverges as t approaches the gel
point t, ; in the latter s (t) keeps increasing with time.

It is known from exact solutions, ' coagulation exper-
iments, and computer simulations that the size distri-
bution approaches a scaling form, c„(t)—s '@(k/s),
as soon as s(t) becomes large compared to the charac-
teristic size at the initial time. The important point is
that the k and t dependence of ck (t) is given through a
universal function of a single variable, k/s(t), that
does not depend on the initial distribution. For a lim-
ited number of coagulation mechanisms, all belonging
to class III (see below), Friedlander's theory of self-
preserving spectra (SPS theory) gave a satisfactory ex-
planation of the experimental observations on Browni-
an coagulation in the hydrodynamic and molecular re-
gime, although the experimental data at large k and t
are rather poor.

By generalizing the SPS theory we can give a unify-
ing description of the scaling behavior occurring in gel-
ling and nongelling systems, described by Smol-
uchowski's equation. Our generalization covers all
coagulation kernels K (ij) that are homogeneous
functions of i and j, and includes large classes of
models, for which the original SPS theory is not valid,
e.g. , K(ij) =i +j.

Since Smoluchowski's equation with a homogeneous
kernel is invariant under a group of similarity transfor-
mations, it admits exact similarity or scaling solu-

tions, 2 3 that can be solved from a nonlinear integral
equation and whose properties are analyzed in this
Letter. The basic assumption of our method is that
the solutions for general initial distributions indeed ap-
proach the special similarity solution. With the help of
the integral equation we can determine scaling func-
tions and related exponents, analytically or numerical-
ly, and we are able to investigate many conflicting
results in the literature.

A strong motivation for our investigations came
from the explicit results for the complete scaling func-
tion and related exponents found in recent computer
simulations of diffusion limited cluster-cluster aggrega-
tion. 6 In view of the success of the SPS theory one
should also attempt to explain these data with the help
of Smoluchowski's equation. However, to analyze
these computer experiments a theoretical understand-
ing of the collision rates K(ij) of large fractal clusters
of sizes i and j would have to be found, or the E(ij)
values should be measured in the same computer ex-
periments, 7 and used as input to solve the nonlinear
integral equation for the scaling function numerically.

Most coagulation coefficients used in the literature
are homogeneous functions of i and j, at least for large
i and j.~ Thus, we restrict ourselves to such kernels
and characterize K(ij) by two exponents, describing
their i and j dependence at large i and/or j:

K(ai, aj) = a"K(ij) = a"K(j,i),

K(ij) =i+j" (j )) i; a=p, +v),
with p, ) 0 (class I), p, =0 (class II), and p, ( 0 (class
III). There exist two physical restrictions on the ex-
ponents: For two large interpenetrable clusters
K (j,j) —jz, which is an upper bound for all K(j,j) as
j ~, and thus X «2. By similar arguments it is re-
quired that v «1, but no restrictions are imposed on
p, . In class I and III the rate constants for reactions of
large with large and respectively large with small clus-
ters are dominant. In the intermediate class II the rate
constants K (ij) for aggregation of large with large and
small with large clusters are of equal size. Nongelling
systems correspond to A. «1, and gelling systems to
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A. &1.
Criteria for gelation .—We first discuss the criteria for

gelation. ' To investigate which aggregation mech-
anisms lead to gelation we consider the mass loss rate
M ~"~(t) across a certain cluster size k, which follows
from Eq. (1) as

k oo

M'"'(r) —= Xjc, = —X
i =1 j= k —i+1

iK (ij)c; c, (3.)

If M (t) =0 for all times, then the sol mass is con-
served, M( t) = gk kck ( t) = M, and the system is

nongelling. The property M ~ ~(t) e0 for all t ~ t, is
interpreted as the occurrence of gelation, since there is
a nonvanishing mass flux of finite-size particles (sol)
to the infinite cluster (gel). The right-hand side of Eq.
(3) can only be nonvanishing if ck(t) has a sufficiently
slow (algebraic) decay at large k, i.e. , ck(t) —k

ck(t) = Ms @(k/s) —= Mk Q(k/s). (4)

To determine s(t) and @(x) the Ansatz (4) is inserted
into Eq. (1) and gives the following integral equation:

(k ~). This Ansatz gives in combination with Eqs.
(2) and (3) that M (t)&0 and is bounded for all
t~ t, if 7= —,'(A. +3). A further requirement is that

the total sol mass M(t) is bounded for t ~ t„ implying
r & 2. Consequently, homogeneous coagulation ker-
nels K (ij) of degree A. describe gelling systems if A. & 1

and nongelling systems if A. ~ 1 [where no consistent
solutions of the form c„(t)—k ' can be found].

Nongelling systems. —Next we consider nongelling sys-
tems (h. ~ 1), and we look for similarity solutions to
Eq. (1) of the general form ck(t) —g(t)@( k/s(t)).
Here conservation of sol mass, gkc k(t) = M, implies

g ( t) = M/s2(t), so that

r (1—~)x p oo
—w[x@'(x) + 2@(x)] = lim —,

'
J dy K(y, x —y)@(y)@(x—y) —@(x)J dy K(x,y)@(y) . (5)

g)P . O'X &X

Here w is a separation constant for the x and t dependence, so that ss "=Mw or s(t) = [C+ (1 —A)M tw]', w. ith
z= 1/(1 —

A, ) and Can integration constant. The mean cluster size increases asymptotically as s(t) —t (t ~),
and we have determined the dynamic exponent z for all homogeneous coagulation kernels with A. & 1. On the bor-
der line A. = 1 the mean cluster size grows faster than any power of t. This special case (A. = 1) will be discussed
elsewhere.

The constant w and the moments of the scaling function, defined as p =„dxx @(x), are related asJp

(7)

(n —1)p w= —,'„I, dx„~~, dyK(x, y)P(x)g(y)((x+y) —x —y ), (6)

as follows after multiplication of Eq. (5) with x and integration over x, where n must be sufficiently large that the
integrals in Eq. (6) exist at the lower limit of integration.

The solution @(x) of Eq. (5) contains two arbitrary constants (a,b), since for any given solution @(x) also

Q (x) = 6@(ax) is a solution. One constant is fixed by the requirement of mass conservation
gkck(t) = Mfdx x@(x) = M or p&

= 1. The other constant can be chosen such that w = 1, but we leave it arbitrary
here. If the separate integrals in Eq. (5) are convergent, then e may be set equal to zero. This appears to be the
case in class III, whereas in classes I and II both terms contain canceling infinities. A representation of the @(x)
equation, free of canceling infinities, follows from Eq. (3):

p oo

wx'@(x) =„~~ dy dzyK(y, z)@(y)@(z),

where consistency requires that x P(x) 0 as x 0. In our arguments we use the more convenient form (5).
We are interested in solutions $(x) with exponential decay at large x. This restriction is motivated by a theorem

of White, applicable to kernels with K(x, 1 —x) ~ Kp so that K(i j) ~ Kp(i+ j) ~ Kp(i+ j) (ij =1,2, . . .),
stating that ck(t) (k=1, 2, . . . ) at any finite time decays faster than any power of k. We find, in fact,
@(x)= Ax "e ™(x ~), which is valid for aii gelling and nongellingcoagulation kernels with v & 1.

To study the small-x behavior the three classes are considered separately. In class I one verifies by direct substi-
tution that Eq. (5) admits algebraic solutions

@(x)=Bx ' (x —0),

~ = 1+Z, a = (1 Z) w/I. (1+Z ), —
(Sa)

where mass conservation (p& = 1) implies 7 & 2 and L (~) is defined as
t

1

L (~) = —,J dx K(x, 1 —x) [x(1—x)] "x ' ~ 2+ (1 —x) ' —1) (Sc)

and converges for p, & 0 (class I). Equation (Sc) also shows that the dominant small-x contributions to $(x) come
from gain and loss terms in Smoluchowski's equation. We can further show that a leading behavior (3a) with
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v. = —,
' (X+ 3) is excluded if the sol mass is to be finite.

Also note that @(x)=Bx ' " is an exact solution,
which is unphysical as it contains an infinite mass
(p, ~) 4

In class II (p, = 0, v = A. ) the small-x behavior is still
of the form (Sa), but Eqs. (8b) and (Sc) are no longer
valid since L (1+X ) diverges logarithmically at x = 0
and x= l. Analysis shows that the dominant small-x
contributions come from the loss term in Eq. (5), and
the result for class II is r = 2 —p„/w where r must
satisfy the consistency requirement, r & 1+A. . Since r
is given in terms of integrals over @(x) [see Eq. (6)],
it can only be determined after solution of the @(x)
equation. This result suggests that the ~ exponent in
class II systems depends on the specific form of the
coagulation kernel.

In class III systems (p, & 0) the dominant small-x
behavior is again determined by the loss term. Here
Eq. (5) reduces to —x@'(x) —@(x)x '"' so that
p(x) —exp( —x 4 ) vanishes exponentially fast for
x 0 [P(x) has a bell-shaped curve]. This property
is in strong contrast with the typical behavior (Sa) in
classes I and II. Much more detailed results follow
from the explicit form of the kernels, e.g. , (a)
K(x,y) = (xy) (n & 0), (b) K(x,y) =x +y
(u & 0), and (c) K (x,y) = (x +y ) (x +y ) (in
the last case o, = —,

' corresponds to Brownian coagula-
tion) give respectively the following small-x behavior

stage, we consider the scaling form, supposedly valid
for sufficiently large k and sufficiently close to the gel-
point (t t, ), with P(0) finite:

c„(t)= Mk y(-k/s) = Ms '@(-k/s). (I lb)

s(t) = [C —wMt/o]'i = s-p(t, —t) (12)

with o. = —,
' (h. —1). Here we have anticipated that

r = —, (A. + 3) also below the gelpoint. The mean clus-
ter size is an increasing function of time. It diverges as

t, = o.C/( wM), where t, has a finite value in gel-
ling systems 1 ( A. ~ 2.

The small-x behavior of @(x) is found by inserting
the Ansatz (8a) into the @(x)-equation. The pregel r-
exponent is found by solving the transcendental equa-
tion, L (r ) = 0, where L (7 ) is defined in Eq. (8c). Its
solution is easily seen to be ~ = —,

'
(A. +3).

In summary, we have for the size distribution in gel-
ling systems (1 ( A. ~ 2) in the pregel stage

Here s (t) is a measure of the mean cluster size, which
diverges as t t, . Below we shall see that the pregel
exponent equals the postgel exponent in r = —,

'
(A. + 3).

To determine the scaling function we insert the Ansatz
(lib) into Smoluchowski's equation and obtain Eq.
(5) with the factor of 2 on the left-hand side replaced
by ~. The mean cluster size s(t) is determined by
Mw = ss' 2 ", so that

@(x)= Cx 'exp[ —2x pp/~p ],

@(x)= Cx 'exp[ —x pp/~p l,

(9a)

(9b)

ck(t) = k 'p(k(t, t)' )—
(t- t, ,k- ~),

(13a)

@(x)= Cx 'exp[ —(x p /nw)+ (x p /nw)],

(9c)
where r' and w can be expressed in moments of the
scaling function,

ppw pp + pap —u, r = 2pap —u/ppw (10)
Th«esuit @(x)= Bx ' (x 0) in classes I and II

implies that the k and t dependence of ck(t) factorizes
as t —~. Thus, ck(t)/ct(t) —k " (t ~) and
ck(t) —ct(t) —s' —t (t ~), where 5=1 in
class I and S= (2 — )/r(I —A. ). In class III (p, ( 0),
on the other hand, ck(t)/ct(t) ~ as t ~. If p, is
very small (~p, ~

—0) there exists an intermediate x
range, 1 )& x )) xp ——exp( —I/~tL ~), where kernels
in classes I and III show typical class II behavior with
crossover to respectively class I and class III behavior
at x —xo.

Gelling systems. —Next, we return to gelling systems,
where 1 & A. ~ 2. It follows from the discussion
around Eq. (3) that the size distribution in the postgel
stage (t ~ t, ) has the form

ck(t) = B(f)k ' [k—,r = —,
' (X+3)]. (11a)

In order to study the size distribution in the pregel

where the scaling function has the form

@(x)=x 'y(x)
'+ Bix '+. . . (x —0), (13b)

with o-= —,
'

(A. —1), r= —,
' (h. +3), and r, =r —tL. It

can be shown further that B —[ —M (t, )]' 2. In
the postgel stage (t ~ t, ) the size distribution is given
by Eq. (1 la).

%e discuss the relation of our results to those
known in the literature and their relevance for the re-
cent computer simulations. In classes I and II our
large- and small-x results for homogeneous kernels
with A. & 1 generalize previous results of Lushnikov
and Piskunov~ for the product kernel K(xy) = (xy)"
(0 & m & —,'; class I) and for the sum kernel
K(x,y) = x"+y (0 & cu & 1; class II). The result
~=1+2' for the product kernel was rederived by
Leyvraz, 9 using a recursion relation for the time-
independent constants, bk ——ck(t)/ct(t) (t ~).
For the sum kernel one finds that
r =2 —p„p2/(2p„+tpt), as already shown in Ref. 4.
This r value differs from ~tt = 1+ —,

'
co, derived in Ref.

9. The exponent rz has no bearing on the asymptotic
properties of @(x), as has been shown elsewhere. 'p
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Class III kernels for several cases of Brownian
coagulation2'2b have been studied both analytically and
numerically in connection with the theory of self-
preserving spectra. The results9 'o are new results for
kernels of class III, which generalize previous results;
e.g. , in the case of Brownian coagulation [case 9c with
ct = —,

' ] Friedlander and Wang b have numerically
evaluated the constants in Eq. (9c) using the normali-
zation pt = pa = 1, and obtained the value r' = 1.06 for
the exponent in Eq. (10), which is independent of the
chosen normalizations.

The results" '3 for gelling systems generalize the
resultss for the product kernel K(x,y) = (xy)" with

& co ~~1.
For all gelling and nongelling kernels one can deter-

mine higher-order corrections of algebraic type to the
dominant small-x behavior of @(x). An exception is
formed by certain nongelling class I kernels, such as
K(x,y) = (xy)" (0 & co & —,

' ), for which we have not
been able to determine the analytic structure of the
first correction to the leading term in Eq. (8a). This
fact may be related to the question of existence of phys-
ically acceptable scaling solutions of Smoluchowski's
equation. We cannot exclude the possibility that the
exact solution @o(x)= Bx ' ", which has infinite
mass, is the only solution for certain class I models,
i.e. , that for such models physically acceptable scaling
solutions may not exist.

As already discussed in the introduction, our theory
may possibly explain in a quantiative way the scaling
behavior observed in recent computer simulations,
after some theoretical or numerical data on the rate
constants K (ij) become available. However, in a
qualitative way one can understand the observed effect
of a size-dependent diffusion coefficient on the scaling
function. It was found that for a size-dependent dif-
fusion coefficient, Dk —k'r, with y sufficiently large
(e.g. , y) y, = —0.5 in 3 dimensions), the scaling
function @(x) decreases monotonically, viz. , @(x)—x ' (x 0+) and $(x) « 1 (x ~), where v

depends in a continuous manner on y. If y decreases
below 7 „ the shape of @(x) exhibits crossover from
monotonic decrease to a bell-shaped curve. If one as-
sumes that K (ij ) has the same structure as in Brown-
ian coagulation, i.e. , K(ij)= (D;+ DJ) (R;+ R~),
where Rk —k" (k ~) is the radius of gyration of a
cluster of size k and Dk —kv its diffusion coefficient,

then one observes a similar crossover from class III
(y & 0), where @(x) has a bell-shaped curve, to class
II (y ~ 0), where @(x)—x ' (x 0+ ) decays
monotonically.
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