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Analog of Small Holstein Polaron in Hydrogen-Bonded Amide Systems
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A class of amide-I (C=O stretch) related excitations and their contribution to the spectral func-
tion for infrared absorption is determined by use of the Davydov Hamiltonian. The treatment is a
fully quantum, finite-temperature one. A consistent picture and a quantitative fit to the absorption
data for crystalline acetanilide confirms that the model adequately explains the anomalous behavior
cited by Careri et al. The localized excitation responsible for this behavior is the vibronic analog of
the small Holstein polaron. The possible extension to other modes and biological relevance is ex-
amined.

PACS numbers: 71.38.+i, 78.30.Jw, 87.15.8y

~k), = g@,(k)H, B,~O)~~(n,„));
@~I(k) is the amplitude of the amide-I excitation and 0 I is a unitary transformation which displaces the mjth lat-

tice site. Note that equivalently one can canonically transform the Hamiltonian to incorporate the lattice displace-
ments, in which case the trial state would be a linear combination of product states for the noninteracting system.
Then with exp( —U~I ) = O J, ~

k ), becomes

~k), = exp( —U) g@~, (k)B~, ~0) ~ ~ (nv„)), (2)
mj

U= (1/~N) XXq B B (aqs a qs),
m+L",' = L"'q„

nl, qS

with Lqs a variational parameter. By inspection, the canonical transformation would be H = e He, where H is
given by Eq. (1). Writing down an expression for the average energy of the system (temperature comes in via

n, h), one can then vary the energy with respect to @ J (k) and Xq', , imposing the normalization constraint by in-

Recently, there has been reawakened interest in crystalline acetanilide (ACN) with emphasis on an anomalous
temperature-dependent ir absorption peak at = 1650 cm ', see Careri et al. ' One of the major points of this
work is that the absorption strength is found to vary as exp( —PT ) at low temperatures, to high accuracy, which
follows straightforwardly from the Davydov model used here. The physics is analogous to the zero-phonon line
seen in other contexts. A second point is that I have employed a fully quantum mechanical, finite-temperature
methodology similar to that used by Yarkony and Silbey in treating exci tons and by Holstein for polarons. This
can be done because of the similarity of the Davydov Hamiltonian to the Hamiltonians used in these two cases.

The structure of this crystal is similar to o.-helical proteins and so it seems plausible that an understanding of
ACN could shed light on the behavior of this class of proteins.

The Davydov Hamiltonian can be written H =H„+H» +H;„„with
H = $ [E&8„,B„,+J(B„+t; B„;+B„+t; B„;) ] + Xlt coq, ( aqs aq, + —,

' )
fl I qs

+(1/JN ) QXq'ltcoq (aq +a q )B„;B„;, (1)
Pfl, QS

X",'= iX[1/(2Mtcoq3, )]tl2sin(q b)(eq, b/b) exp(iq R„;), coq, =2too, sin(q b/2), EA =Eo D, —

where (i) B„;,B„;are the creation and annihilation operators for the amide-I (C=O stretch) mode at site n on the
i th chain, (ii) aq„aq, are the operators for the lattice modes toq, , with polarization vector eq„(iii)X is the coupling
constant for the mode-lattice interaction, (iv) Eo is the vibrational energy of the amide mode when the molecule of
mass M is isolated and D is the static shift due to lattice effects, and (v) J is the dipole-dipole interaction energy
between adjacent C=O dipoles displaced by b on the same chain (J ( 0 here). Built into the Hamiltonian is one-
dimensional transport of the excitations via dipole-dipole interaction and coupling to the longitudinal modes of the
assumed lattice structure.

Extending the variational method often applied to the polaron and exciton problems, ' I write a general form
for the trial state of the low-lying energy eigenstates of the system,
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eluding a Lagrange multiplier. I summarize the results: (I) For X~,
' chosen to be site independent, one obtains (a)

an extended plane-wave solution, $, (k) = (I/JN ) exp(ik R, ) for which X~,
' —h~p. Correspondingly, H is

given by H = Ho+ V, where in wave-vector representation,

Hp = Q(Eg —2
I
J I cosk b)8kBk+H» (3)

and V contains off-diagonal terms. (b) There is also a localized solution (the Davydov soliton), this solution being
valid for X /4I J IMcup, & 1. However, in the limit of X /4I J IMc0p, & 1 the excitation becomes localized to the re-
gion around a single site and this solution can be used to construct Bloch-type states for the system. In this case
(II), X~,

' =X~', and @mj (k) = (I/~N ) exp(ik R, ). This seuerely localized excitation is analogous to the Holstein
polaron. Here H =Ho+ V, for which

Hp= X„[&~+6,—2IJI exp( —S) cosk b]BkBk+H» (4)

and V contains the off-diagonal terms. Here 4 = —(1/N ) g~, tee~, IX~', I
is the shift in energy of the localized exci-

tation due to phonon dressing (the largest contribution coming from the short-wavelength modes) and (0„+~;
x 0„,) L = exp( —S), where

S = (1/N ) g, (2n, + 1) IX"„',
I (1 —cosq b)

is a temperature-dependent modulation factor (for the dipole-dipole interaction) which is a measure of the coher-
ence of the excitation.

As pointed out, the Davydov soliton cannot be photoinduced since the time taken for a cooperative distortion of
the lattice in the formation of the soliton is much longer than the absorption time of the photont 7 (Franck-
Condon principle). Therefore, of the excitations discussed above, only (Ia) and (II) are relevant to any treatment
of the photoinduced spectral properties of the system. With the spectral function l(cu) = lp, l /(27r) f dtl(t)
x exp(icut ), where p, is the dipole matrix element and

I(t) = X ([B„',(t)+B„,(t)][B.', (0)+B., (0) 1)
ni, mj

with (. . . ) denoting the thermal average, one obtains the following: For the excitation (Ia),

1(~)= Ip, I'Nr, „/~[(~—E/a )'+ r2„], (5)

where E= Ep D —2I Jl and I—,„=I/r,
„

is the radiative decay constant of the free extended vibrational excitation.
This equation indicates that there will be a temperature-independent absorption peak at cu = E/f with half-width
I,„.For the localized excitation, case (II),

I (cu) =
I p, I

NI'p exp( —IV)/7r [(co —E~/tI, ) + I p],

where Et =Ez +6 —2IJI exp( —S) and exp( —IV) is
the ubiquitous Debye-Wailer factor which measures
the probability that the phonon distribution remains
unchanged during the absorption process. ' 8 is given
by

W = (1/N ) X(2n ~, + 1) IX~,
' I'.

qs

Here two assumptions have been made: (1) a very
long radiative lifetime, ~, of the excitation (~ —1/I p,
the lifetime of the C=O stretch mode in an isolated
molecule) and (2) a temperature of the system less
than the Debye temperature. From these equations it
should be noted that the absorption peak correspond-
ing to the localized vibronic excitation may be tem-
perature dependent both in strength and in position.

Now, the expressions 5 and 8 will be evaluated to
check for consistency with the absorption data. These
expressions all contain the term IX~,

'
I given by

IX~', I2 = X2[(q b) 5, ~] sin (q b)/2Mtcu~„

where ~~, b/b =iq b, s=1 being the longitudinally
polarized phonons. Converting sums to q-space in-
tegrals, one obtains

q D3f (q D b )/Mn (27r ~p j ) (8)

where qD
——6n7r, n is the number density of mol-

ecules in the crystal, and f is a function of qDb. The
dispersion relation for the crystal is assumed to be of
the form co~& = 2(Opt sin(q b/2). "

n+pT, T « OD,8'= '

yT, T » OD.
(9)

o. , p, and y are positive constants: o. = X g/
8Mnfm (cup&b) and P= X kB/12Mncusp~(fb) . Here
g is also a function of qDb.

The data used to evaluate these expressions are
g =4.9 A, n =5.38x10 m, M =2.25x10 kg,
cop~ = 1.39 x 10' s ' (reconstructing the dispersion re-
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lation" used here from the Raman data for the true
crystal' ). The estimated value of J is 1.5—4 cm
With use of these data qDb =3.35, f'(qob ) =0.044,
g (q Db) = 4.3, and ()n = 356 K.

The value of X is not known precisely, and therefore
I eliminate it by considering the ratio lA l/P. With use
of Eqs. (8) and (9),

(l~ I/p). .1
= 18~ (&~ptb )'f /kg.

Hence, (lb. l/P)„i=8.3x10 ' JK2. Now, from Fig.
1, lAl = 15 cm '. Performing a least-squares fit of
the absorption data, plotted as log(intensity) versus
(temperature) 2, one obtains p = 2.75 & 10 s K
where P is the inverse of the slope in Fig. 2. Conse-
quently, one obtains (lb, l/p), „„=10.8&&10 's J K2,
which differs from the calculated value by approxi-
mately 20%.

Now, estimating the coupling constant by using the
experimentally determined value of P, one obtains
X = 3.88 & 10 ' N, which is within an order of magni-
tude of the model-independent estimate (6.2&&10

N) used by Careri et al.
The separation between the two peaks in Fig. 1 is

given by E —Et ——lb l

—2lJI[1 —exp( —S)]. Using
the estimated value of X and evaluating the expression
for S, one obtains S (T = 0) = 0.24. Thus E —E&
should vary from —

l
4

l

—2l J l at high temperature to

—lb. l

—0.42lJl at T=0 K. By inspection of Fig. 1,
very little variation is observed in the separation of the
peaks (to within 1—2 cm ') which suggests a low
value, 1.5 cm ' say, for l J l. With this estimate,
X /4 l J l Mt0p& ——29 which is consistent with the as-
sumption that the excitation corresponding to the
1650-cm ' peak is analogous to the Holstein polaron.
It should be emphasized that the linear behavior ob-
tained in Fig. 2 for T « Hn (356 K) and the depar-
ture therefrom for T )& On (not shown) are specific
to coupling between the amide-I mode and acoustic
lattice modes of the idealized crystal. The model used
by Careri et al. assumes a low-frequency optical
mode, in which case good agreement with experiment
over the experimental temperature range can only be
achieved if this mode has a complicated functional
dependence on temperature —which is difficult to jus-
tify. '

The agreement of the data with the Davydov model,
as applied here with all of the lattice modes being con-
sidered, occurs because the short-wavelength phonons
are responsible for the self-trapping of the vibronic ex-
citation but the temperature modulation is governed
by the low-frequency (acoustic) modes at tempera-
tures below OD. It should be pointed out that the cal-
culation here can be extended to include the sidebands
associated with multiphonon processes and that the
model can be extended to modes other than the C=O
stretch mode, for example, modes which involve N —H
stretch and which are likely to couple to the lattice.
Additionally, this Hamiltonian gives one the frame-
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FIG. 1. Infrared absorption spectra of crystalline ACN in
the amide-I region (10—320 K), taken from Fig. 5 of Careri
et al. (Ref. 2).

FIG. 2. Intensity of the 1650-cm ' peak vs the square of
the temperature. Data points and the least-squares —fitted
curves are shown. The straight line is obtained with the
Davydov model. The other curve is a plot of the theoretical
expression used in Fig. 15 of Careri et al. (Ref. 2).
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work to tackle the transport properties of the localized
excitation observed here. '"

With regard to the applicability of the Davydov
model to biological processes, there has been much
speculation in the literature with no concrete confir-
mation of the existence of the localized excitations
predicted by the model. The application of the model
to ACN is the first confirmation of the validity of the
Davydov model to anything remotely resembling a
biological molecule. This gives one some hope that
one may see similar behavior in o.-helical proteins. A
factor which may influence whether such an excita-
tion, if photoexcited, can be observed in an o.-helix is
the dimensionality of its lattice —for a one-dimensional
lattice the intensity is temperature independent but
depends on the length of the chain being considered.
Finally, I wish to point out that in contrast to the
Davydov soliton it is clear that the more localized exci-
tation can be photoinduced and is possibly easier to ex-
cite chemically. If this is the case then it may well be
that this excitation (not the Davydov soliton) is more
relevant to biology.

I wish to thank J. A. Krumhansl for useful com-
ments and for making this work possible, D. Waxman
for agreeing with me that there was a problem and
then pressing me to solve it, M. Nicoletti and S. Trug-
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Scott for providing me with a copy of the manuscript
which permitted me to make contact with experimen-
tal results, and E. Gratton for permission to use these
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