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Convection Patterns: Time Evolution of the Wave-Vector Field

M. S. Heutmaker, P. N. Fraenkel, and J. P. Gollub
Department ofPhysics, Haverford College, Haverford, Pennsylvania 19041, and Department ofPhysics,

University ofPennsylvania, Philadelphia, Pennsylvania 19104
(Received 6 February 1985)

The evolution of Rayleigh-Benard convection patterns has been studied quantitatively with use of
digital image processing methods to measure the time dependence of the wave-vector field. The re-
lative importance of wave-number variations, roll curvature, defects, and sidewalls was determined,
with the Swift-Hohenberg model as a framework for analysis. Deviations from the model become
pronounced for (R —R, )/R, & 2, where R, is the critical Rayleigh number.

PACS numbers: 47.20.+m, 47.25.—c

In many nonlinear systems, a homogeneous state
becomes unstable to spatially periodic perturbations
when the critical value of a parameter is exceeded.
Hydrodynamic instabilities and morphological instabili-
ties of growing crystals are examples. Stability theory
yields the onset and critical wave number of the insta-
bility, but does not generally give unique predictions
for the form or evolution of the resulting patterns at a
finite distance above the onset. A particularly chal-
lenging problem is that of the formation of Rayleigh-
Benard convection patterns in a large layer. ' These
are often textured structures containing defects; they
cannot be described by a single wave number, but may
be specified by a two-dimensional wave-vector field
q(r) that contains the full information about orienta-
tions and spacings in the pattern.

We show in this paper that q(r) can be measured
experimentally using digital image processing
methods. We use this information, in conjunction
with a two-dimensional models '0 for convective pat-
tern evolution, to study various contributions to the
dynamics, including defects, roll curvature, and the ef-
fects of boundaries. Model equations are useful in
part because it is difficult to integrate the full hydro-
dynamic equations over the long time scales character-
izing pattern evolution. Various models have been
studied numerically " and analytically, ' but none
of them have yet been tested experimentally. The par-
ticular model we consider (due originally to Swift and
Hohenberg9) is a simplification of the hydrodynamic
equations having the following interesting property: a
functional Fof the dynamical fields decreases monton-
ically, in analogy to the minimization of the free ener-
gy in equilibrium processes.

We find that the validity of the model depends
strongly on the distance e= (R —R, )/R, above the
onset of convection. The experiments are consistent
with the model provided that e is neither too close to
onset, nor larger than a cutoff e „=2.Using the
model as a framework for analysis, we find that
changes in the magnitude of the wave-vector field due
to defect motion are particularly important, while roll
curvature and lateral boundaries contribute much less
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FIG. 1. Digitally enhanced images from a pattern evolu-

tion sequence at e= (R —R, )/R, =0.7; time is given in

units of the horizontal thermal diffusion time ~z.

to J.
The experiments were performed in a cylindrical

convection cell of diameter D = 86 mm and depth
d = 3.0 mm (aspect ratio I = D/2d = 14.4). The work-
ing fluid is water at 70'C where its Prandtl number is
2.5, and the critical temperature difference AT, is
0.720'C. The horizontal thermal diffusion time rh
based on the cell radius is 3.1 h. The structure of the
convective flow is determined by the refraction of an
expanded and collimated laser beam that enters the
cell from above, traverses the fluid, reflects from the
lower plate and impinges on a diffuse screen, where it
is digitized (resolution of 320 pixelsx 240 pixelsx 8
bits) by use of Newvicon camera as a transducer. The
apparatus will be described in detail elsewhere. '2 Digi-
tized images are averaged to reduce noise, divided by a
reference image (with no convection), and then con-
trast enhanced to reveal the weak convective struc-
ture. 2

Figure 1 shows four contrast-enhanced images from
a sequence at e =0.7. Bright areas mark the cold (des-
cending) fluid and dark areas mark the warm (ascend-
ing) fluid. In order to obtain patterns that evolve sub-
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stantially, the system was prepared in a turbulent state,
and then e was reduced to 0.7. As time passes the ini-
tial cellular pattern quickly changes to bent convection
rolls with many point defects (similar to dislocations
and disclinations in solids) and line defects (similar to
grain boundaries), as shown in Fig. 1(b). The defects
are slowly expelled from the pattern until a final time-
independent state is reached in which the rolls align
nearly perpendicular to the sidewalls, and few defects
remain. The evolution process is slow; major changes
occur within the first horizontal thermal diffusion
time, but at least 10—20 thermal diffusion times are re-
quired for the pattern to stabilize.

In order to study the pattern evolution quantitative- FIG. 2. Wave-vector field q(r) on a grid of Points for the

q(r) by dtgttal Pattern of Fig. I (c), as determined by digital image analysis.
The background intensity is coded in proportion to the waveanalysis of the images. The role boundaries are first
number, while the line segments indicate the orientation offound by following contours of maximum or minimum

intensity. A grid of evenly spaced points is then super-
imposed over the pattern. The local roll orientation
and spacing are interpolated at each grid point from
the nearby roll boundaries in order to find the local orientation and magnitude of the wave vector. Small areas
near defects are excluded from this calculation since the wave vector is undefined there. Figure 2 shows the result
of this calculation for the pattern of Fig. 1(c). The background intensity is coded in proportion to the wave
number q (r) = ~q(r) ~, while the line segments indicate the orientation of .q(r). The white excluded areas mark
the locations of defects.

Measurement of the wave-vector field allows us to use the Swift-Hohenberg model as a framework for analysis,
and to estimate its range of validity. This model is an evaluation equation for a real order-parameter field p(x,y, t)
that is proportional to the vertical velocity and temperature at a fixed height in the fluid layer. One of the most im-
portant properties of this model is that it is variational; as P evolves a Lyapunov functional F decreases monotoni-
cally:

d rI 2t 2EQ + 2((p/4qp)[(7 +qp)Q] + 4gp ).
In this equation gp is a coherence length scale, qp is a
reference wave number, and gis a coupling constant of
order unity. On the sidewalls of the cell, Q and its nor-
mal derivative vanish. Far from the sidewalls, the
model favors a static pattern of straight rolls with wave
number q = qp. Numerical simulationss and analysis
suggest that the model is appropriate for small e.

Near onset in a laterally large layer (e'~ I &) 1),
Cross showed that one can separate the contribution to
Fdue to roll distortion in the bulk of the cell from that
due to the suppression of convection near the
sidewalls. 'p The bulk contribution can be written ap-
proximately'3 in terms of the wave-vector field q(r) of
the pattern:

2" 2F~=—egp 'i d r[(q —qp) + (I/4qp )(V' q) ).
This integral depends on two quantities: the square of
the wave-number deviations (q —qp)2 and the square
of the wave-vector divergence (V q) /qp, which is
predominantly a measure of roll curvature. The
sidewall contribution is minimized when the rolls are
aligned perpendicular to the sidewall:

Fs = ,
' J2~3t'&pI—Itl[(q s)/q]dl,

!
where s is a unit vector normal to the sidewall and the
integral is taken around the cell boundary.

The amplitude of convection is suppressed near de-
fects in the pattern, and this results in further contri-
butions to F, which may be approximated as

~D= 2 ~'&D~I;,2

where XD is the number of point defects (disclina-
tions) in the pattern and r, is the radius over which Q
is suppressed. We assume that g & r, & 2g, where the
coherence length g is (pc t~2, and gp

——0.385d. Fur-
ther theoretical work is required to specify it more pre-
cisely. The sum of all these contributions
F= Fz+ F~+ I'D is predicted to decrease monotonical-
ly during pattern evolution.

For the reference wave number qo, we use the ex-
perimentally measured wave number selected by a pat-
tern of straight rolls. '4 This quantity decreases with in-
creasing e, similar to the trend exhibited by the mean
wave number in our textured stable patterns.

Figure 3(a) shows the results of our experimental
measurement of the two parts of Fz for the evolution
sequence of Fig. 1, with a=0.7. The spatial averages
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FIG. 4. Digitally enhanced images showing spontaneous
defect nucleation at e = 2.9.
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FIG. 3. (a) Spatial averages of the wave-number devia-
tions (q —qo)~ and wave-vector divergence (V' q)'/q$ vs
time (logarithmically) at a=0.7. (b) Total Lyapunov func-
tional F and the bulk, defect, and sidewall contributions vs
time (see text).

of (q —qo) and (V q)2/qo2 are shown as a function
of log(t/rh). (Lengths are measured in units of the
cell depth. ) We find that the wave-vector divergence
decreases monotonically as the roll pattern becomes
straighter, but the wave-number deviation is much
larger and fluctuates significantly as defects move.

The total F and various contributions'3 to it are
shown in Fig. 3(b). The sum is dominated by the bulk
and defect terms Fz and FD, while Fs is much smaller,
and nearly constant. To determine the possible range
of FD, we assume that the effective core size is in the
range g & r, & 2g. (It would be better to measure the
amplitude suppression directly to determine FD, but
the shadowgraph images are not sensitive to the
suppression. ) The total F is consistent with a mono-
tonic decline, but the uncertainty is large because of
the relatively large range for Fz.

We have performed this analysis on many other pat-
terns both closer to and farther from onset. For small
e ( & 0.3), variations in Fz are small, and the decline
of FD as defects are eliminated causes the only signifi-
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FIG. 5. Total Lyapunov functional F and bulk, defect,
and sidewall contributions vs time at e = 2.9. The nucleation
of defects leads to nonmonotonic variations in F.

cant change in the total. At long times (up to about
50vt, ) any variation in F is below our experimental
resolution (about 10'/o), but the patterns are noticeably
time dependent, ' substantially so for a=0.1. There-
fore it is possible that the dynamics are not relaxation-
al (monotonic) very close to onset. However, the evo-
lution of F is qualitatively similar to that observed at
e = 0.7 up to e = 2. Thus we conclude that the minim-
ization of F is consistent with our data over a range

;„&e & e,„,where e;„=0.3 and e,„=2.
For e )e,„,on the other hand, defects nucleate

spontaneously as shown in Fig. 4, causing large non-
monotonic variations in F (Fig. 5). A large increase in
F~, due primarily to substantial wave-number varia-
tions, occurs when new defects enter the pattern.
These major pattern changes seem to be precipitated
by the climbing of newly created dislocations into re-
gions of large roll spacing near defects in the bulk of
the cell. We have observed the nucleation of these
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dislocations in each of three runs at e = 2.9.
The final-state patterns are clearly not unique (at

any fixed e), a result that was previously noted for rec-
tangular3 and smaller circular2 cells. The various tex-
tured final patterns obtained from different initial con-
ditions can have values of F differing by about 25%.
We conclude that this functional must have many local
minima.

Furthermore, we note significant qualitative differ-
ences in the way that the patterns adapt to the
geometry at small and large ~. For e ( 1, grain boun-
daries are the dominant type of defect, while at higher
~ disclinations are present. This is consistent with the
different e dependence of the various contributions to
F, as well as with the increase with e of the size of the
band of stable wave numbers.

In summary, measurement of the time-dependent
wave-vector field provides a useful way to characterize
pattern evolution quantitatively. This can be accom-
plished by digital image analysis for evolving convec-
tion patterns. The Swift-Hohenberg model provides a
fratnework for estimating the relative importance of
defects, roll curvature, and wave-number variations.
The largest changes in the Lyapunov functional Farise
from wave-number variations associated with defect
motion, while roll curvature and boundary effects are
much smaller. Deviations from the model become
pronounced above e = 2, though it is useful for a sig-
nificant range of e. A better understanding of point
defects would allow a more precise comparison
between theory and experiment. It would be desirable
to test other models, some of which include nonrelax-
ational effects, and to investigate the effect of chang-
ing the Prandtl number.
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