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Using a simple example we show that the distribution for the energy levels for integrable systems
is not the uncorrelated Poisson distribution as is commonly believed. In particular, the spectrum
was found to be rather rigid. We conjecture that these are typical properties of the integrable quan-

tum systems.
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Energy-level statistics is an important property of
many physical systems such as complex atoms and
molecules, heavy nuclei, etc. This problem has re-
cently attracted much attention!-!® among physicists,
chemists, and mathematicians. In particular, energy-
level statistics provides an indication of the type of
motion of a quantum system. It is commonly believed
that ‘‘level repulsion,” i.e., Wigner statistics for level
spacings, is related to nonintegrable, chaotic classical
motion, while the lack of repulsion, i.e., Poisson statis-
tics, corresponds to integrable motion. Actually, this
is no absolute rule; indeed the energy-level repulsion
which appears in classically nonintegrable systems, as
confirmed by several numerical computations, is due
to some real interaction among the unperturbed states
which leads to a formation of eigenstates which are the
superposition of many unperturbed states. However, a
repulsion which may be said to have a kinematical rath-
er than dynamical origin may take place in integrable
systems. (To avoid any possible misunderstanding we
will use the concepts of integrability, etc., only in con-
nection with the corresponding classical system.) The
simplest example of such a kinematical repulsion is the
one-degree-of-freedom conservative system. From
the viewpoint of level statistics one could say that
there is a strong repulsion in this case since the spac-
ings are equal to the frequency of the classical motion
which is typically different from zero. A more in-
teresting example of kinematical repulsion has been
given by Berry and Tabor? in a two-degrees-of-
freedom harmonic oscillator.

The distinction between integrable and nonintegr-
able systems becomes much less clear when higher-
order statistics, i.e., correlations between many levels,
are taken into account. In the search for distinctive
properties, spectral sequences of simple model systems
have been subjected to various statistical tests. For ex-
ample, Bohigas, Giannoni, and Schmit!® were able to
establish a definite similarity of fluctuation properties
between the spectral sequence of Sinai’s billiard and
strings of eigenvalues of random matrices in the
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Gaussian orthogonal ensemble.

In this Letter we communicate the results obtained
by statistically processing a string of 10° eigenvalues of
the rectangular incommensurate billiard, obtained by
reordering the double sequence

E,,=am?+ n?, 1)
with a an irrational number.

In a previous paper,!! we discussed the algorithmic
properties of the same sequence in order to show that
it is not a truly random one. Not being based on
specific tests, our argument may leave the doubt that,
nevertheless, the sequence may appear ‘‘random’ to
empirical tests. Thus, we have performed the follow-
ing tests:

(1) Distribution of the level spacings.— This is shown
in Fig. 1 and it looks fairly close to the Poisson distri-
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FIG. 1. Level-spacing distribution obtained from the first
100000 levels (1) with o =7/3. The dotted line is the Pois-
son distribution P(s) =e~5.

© 1985 The American Physical Society



VOLUME 54, NUMBER 13

PHYSICAL REVIEW LETTERS

1 APRIL 1985

P(m)

T o

m

16

FIG. 2. Histogram of the distribution of deviations
my= (nf®— n®*)/ (n**)V2 of the observed number of spac-
ings n°® from the expected number »°* in the ith interval.
The intervals are so chosen that n**=90 for each. The full
line shows the Gaussian distribution of width o =1 corre-
sponding to uncorrelated Poisson statistics; the actual ob-
served rms width is o =+/11 (dashed line).

bution. Nevertheless, for small spacings we found sta-
tistically reliable deviations from Poisson’s uncorrelat-
ed statistics. In fact, for the first interval in Fig. 1 the
deviation of the number of spacings from the expected
value is approximately 17 times the standard deviation.

The distribution inside this interval is also shown in
Fig. 1. Again, the first interval of this distribution
shows the largest fluctuation, with the actual number
of spacings now larger than expected, approximately
18 times the standard deviation.
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The X2 value for all ten subintervals is approximate-
ly 626 and even if we exclude the first subinterval it is
still 297 which corresponds to a negligible confidence
level. Apart from the whole interval (0,0.1) the agree-
ment with Poisson’s law seems to be rather good judg-
ing by Fig. 1. However, the calculated X2 value for 21
intervals is again too large, 69.8, corresponding to a
confidence level of — 10~7. This is another indication
that the sequence is not completely random: In fact, it
exhibits too-large fluctuations for a random sequence
(a similar observation was made in Ref. 17). This is
especially clear in the distribution of deviations from
the Poisson law (Fig. 2). Not only are there substan-
tial deviations from the Gaussian shape but what is
more important, the width of the distribution is about
3.3 times larger than the expected one. This implies
that the entire distribution is definitely different from
uncorrelated Poisson statistics. In terms of the X2 test
a value of — 10000 was obtained for 900 intervals
which corresponds to a completely negligible confi-
dence level.

(2) Aj; statistics of Dyson and Mehta.'®—This charac-
‘terizes the long-term correlations between levels, or
the so-called “‘rigidity’’ of the spectrum. Specifically,
for a_given number L of levels we computed an aver-
age A3(L) in two different ways: (a) by averaging
A3(E,,L) computed along a segment of L levels start-
ing from level E,, over a string E, S E,S<E,
(“spectral average™). In this case the value a=m/3
was taken; (b) by averaging A; over a number of dif-
ferent values of a chosen at random in a given interval
(‘‘ensemble averaging”’).
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FIG. 3. The A;- statistics computed for model (1): spectral average of A; over the first 2850 (plusses) and over 10000
(solid circles) levels with the same o= 7/3; ensemble average of A; over several values of « for 10000 < +# (£ + L) < 11 000

(open circles) and 20000 < 47 (E + L) < 21000 (triangles). The straight line shows A;= L/15.
T
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The results so obtained for A3(L) have been plotted
against L in Fig. 3. The straight line, A;= L/15, corre-
sponds to the behavior of A;(L) for a Poisson statis-
tics of the level spacings. For small L, A;(L) is close
to this line, but then a kind of saturation occurs.
Thereafter, A;(L) becomes a very slowly increasing
function, such as one would expect of a rather regular
sequence. On the other hand, if one looks at the set of
eigenstates on the (n,m) plane which form a perfectly
regular lattice (Fig. 4), one is led, indeed, to expect
A;(L) = const or, at most, a very slowly increasing
function.

A unified quantitative description of these results
can be provided as follows: Consider a ring
E,= E<E, inside which there are L levels, with
L= %W(EZ—— E1). Then consider a boundary layer of

A(EL)~ L+ xtme [NVE + (E+4L/m)V?] for L > me NE.

Instead, if L < me ~E, we expect A;(E,L) = L/15.

By averaging these expressions of Aj in the two ways
(a) and (b) described above, we obtain analytical esti-
mates to be compared with the numerical data of Figs.
3 and 5. In particular, from the spectral average of
A;(L) of Fig. 3, we obtain €., = 0.4.

For an accurate check of the square-root depen-
dence on L it is convenient to take £ =0 in expression
(2), and compute the ensemble average, which gives

A3(L) = (ev/7/15)VL. (3)

Figure 5 shows A3;(L) averaged over twenty values of
o within the interval (0.9,1.2). It is seen that the
square-root dependence is verified with quite good ac-
curacy. Moreover, fitting expression (3) to numerical
results gives €, =0.5, close to the value obtained from
spectral averaging over different segments of levels
with the same «.

In conclusion it appears that, at least for the inte-

FIG. 4. The set of eigenstates.
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width e along each of the two borders of the ring (Fig.
4). As a result of the irregular crossings of the curve
E = const by points of the lattice, the number of levels
in the layer fluctuates. Actually, provided that € is
small (e << 1), we may assume that these levels come
roughly as if at random. Hence A3(E,L) computed
over a string of L such levels, starting from level E,
behaves like L/15. On the other hand, as a result of
the regularity of the lattice, we can not expect the
same for too-long strings; for long strings, A;(L) will
be approximately % of the ‘‘effective nonrigid
length’’ of the string, corresponding to some effective
critical value of € = e, which can be determined by nu-
merical experiments. The total number of these ‘‘ran-
dom” levels lying in the two boundary layers near E;
and E, is approximately +me,(\/E;+~/E,) for
a =1, so that we expect

0))

grable systems discussed here, the level sequence is
rather rigid overall but behaves as a random one over
small energy intervals. In particular this explains the
irregular behavior of spacings leading roughly to the
Poisson distribution.

The argument presented here for the two-
dimensional case may be easily generalized to the N-
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FIG. 5. Graph of ensemble average A;(L) for L < 1000
showing the square-root dependence on L; a=1. The
straight line fits the numerical data with €,,=0.53.
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dimensional case and gives

(VN/15)LIN=-DIN for [ > NN/2,

A(L) =
3(L) L/15 for L < NN?,

assuming £E=3/MN am?, a;=~1, and €, independent
of N. Even though the expressions derived for the
level statistics are related to the particular type of spec-
trum, (1), we conjecture that the qualitative structure
of the spectrum would be the same for a typical inte-
grable many-dimensional system. This view is sup-
ported, particularly, by the results of Ref. 17 where a
similar behavior has been observed in a different
model.

We are greatly indebted to J. Ford, F. Izrailev, and
G. Ghidetti for stimulating discussions.
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