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Classical Diffusion on Eden Trees
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We study an aggregation process which gives rise to compact clusters with no loops. A generali-
zation of the node-counting theorem, applicable to such branched graphs (trees), is proved. This is
used to determine the spectral dimension of these clusters on square and cubic embedding lattices
by Monte Carlo simulations. The results are explained in terms of the geometric structure of these
trees.

PACS numbers: 05.40.+j, 02.50.+s, 63.50.+x

The study of aggregation models is of relevance to a
variety of nonequilibrium phenomena such as nu-
cleation, gelation, polymerization, tumor growth, etc. '

Here we examine a modification of the Eden aggrega-
tion process which gives rise to clusters with no loops.
These clusters presumably have an integral Hausdorff
dimension, but because of their tenuous tree struc-
ture, diffusion on these clusters —called Eden trees
(ET's) —is characterized by nontrivial exponents.

Classical diffusion on trees is also important in the
study of transport processes in clusters, such as per-
colation clusters or Witten-Sander aggregates, as these
are treelike on the large scale. The distribution of
dead ends in such clusters determines the long-time
behavior of a diffusing particle; ET's thus have a non-
trivial spectral dimension which we determine using
Monte Carlo simulations.

The node-counting theorem is a powerful tool to
study disordered one-dimensional harmonic systems.
It proves that the I th eigenmode of such a system has
precisely (m —1) nodes. For trees with some branch-
ing symmetry, there are localized modes with all but a
small number of sites having no displacement, and the
counting of nodes is nontrivial. We prove a generali-
zation of the node-counting theorem applicable to ar-
bitrary tree networks.

The conventional Eden process is the model
wherein starting from a single occupied site on a d-

dimensional lattice, sequential growth occurs by addi-
tional occupation of one of the perimeter sites at each
(discrete) time step. The perimeter is the set of vacant
sites that neighbor occupied sites: At each step, one of
these is occupied at random. A compact cluster
results, with diameter (the maximum extent in any
direction) varying as N'I" for large N, where N is the
size of the cluster.

Our present model involves the modification that
any vacant site which neighbors two or more occupied
sites cannot be occupied. Under this rule, the resulting
cluster, while space filling, has no loops (Fig. 1). We
find that the diameter still varies as %' and the
structure is compact, although its average density is
less than 1. The sites of an ET may be divided into
two classes —those on the backbone of the tree and

those on side branches. The backbone is the set of
sites on paths connecting the origin to the perimeter.

To determine the spectrum of harmonic excitations
on ET's, we solve the eigenvalue equation for the
normal-mode frequencies of the system. For a set of
unit masses on occupied sites, with neighbors connect-
ed by springs of force constant 1, these are

—co U; = X.I UI —U, ),

where U; is the scalar displacement at site i and the
summation is over all nearest neighbors j of i. For
each site i except the origin we define F = U /Ui

=
i p(i)

[where p(i) labels the predecessor site of i on the
tree]. The F s satisfy the recursion relations

F, = [1—~'+ g,. (1 —F,)]-', (2)

FIG. 1. An Eden tree on a square lattice. This cluster has
4000 sites; the backbone sites are marked by lines joining
them.
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H(t0z) = NF+ 0[a) —X„(l—Fk) l (3)

where the summation is over nearest neighbors k of
the origin, and 8 is the Heaviside step function.

An outline of the proof is as follows: The equation
holds if co2= 0+, with H(t0 ) = 1, NF = 0, and F, = 1+
for all i. As co is increased, H(t0 ) increases by 1 each
time the argument of the 8 function crosses 0,
preserving equality (3). If m ( ~ 1) of the Fk's in Eq.
(3) have a simultaneous pole at cu'=a~, as c02 is in-
creased past a these change from + ~ to —~. Thus
N+ increases by m, the 0 function changes from 1 to 0,
and the increase in H(co ) equals I —1, the number
of independent eigenmodes with frequency a having a
node at origin. Similarly, at singular points of F~,
where j is not a neighbor of the origin, if m of the F~ s
in Eq. (2) have a simultaneous pole at b2 (m ~ 1),
then N~ increases by m —1 as co2 is increased past b,
and there are exactly m —1 eigenmodes with a node at
site i. This proves Eq. (3), which generalizes the
node-counting theorem to arbitrary trees.

With use of this result, the integrated frequency
spectrum H(t0 ) is numerically determined in a very
efficient manner. Figure 2 shows the fractional in-
tegrated spectral density for ET's on a square lattice
averaged over 90 trees containing approximately
10000 sites each. 5 The asymptotic power law, H (t0 ),
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where the sum is over all sites j that are successors of
i. For a site i having no successors, F, =1/(1 —cu ),
and all I'; s can be determined recursively starting
from the end points of branches of the tree and using
Eq. (2). By induction, F, 's are rational functions of
a&, with BF, /Bt02 & 0, except at the poles of F, . Let
H(co ) be the number of modes of frequency below t0

and NF be the number of negative F s. Then

holds over four decades of co with the spectral dimen-
sion

d =1.22+0.04.
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We note that the spectral dimension d for d =2 in
our simulations is significantly different from the
values —', and 2d/(2+ 8) argued for recently by Ley-
vraz and Stanley and by Havlin et al.

The spectral density for ET's grown on the simple-
cubic lattice is also shown (averaged over eight trees of
size 8000). There is a significant curvature at low fre-
quencies due to finite-size effects, and a slightly higher
value, d = 1.30 + 0.12, is obtained for the spectral
dimension. (We cannot rule out the possibility that
the spectral dimension for ET's on the square and cu-
bic lattices is identical. )

As an alternative means of determining the spectral
dimension, consider a random walk on an ET, "the
ant in the labyrinth problem. " It is known that after
N steps, the probability of return to the origin is
Po(N) —N i . For d ~ 2, the average number S~ of
distinct sites visited by the ant in N steps varies as the
inverse of Po(N); hence Sz —N~i and the variance
of 5&, cr& —X". For trees on a square lattice, results
of Monte Carlo simulations, averaged over 100 trees
of size 4000 and for 100 walks on each tree, are shown
in Fig. 3. The value of d =1.19+0.03 so obtained is
in excellent accord with Eq. (4). Unlike random walks
on some nontree fractals, the exponent governing the
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FIG. 2. H(cu ), th2e fractional number of modes of fre-
quency below co for the square and cubic lattices.

FIG. 3. Results of Monte Carlo simulations of diffusing
ants on ET's grown on a square lattice. After 1V steps, (Sd)
is the number of distinct sites visited, a-~ is the variance of
S~, and R~ is the distance measured along bonds, from the
origin.
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mean displacement is not d/(2d). We observed that
(g„R„) summed over all distinct sites x visited up to
time N varies quite linearly with N. Since this quantity
should vary as (R)v) (S)v), we get (R)v) —N', in
agreement with the N — observed (Fig. 3). Simi-
lar simulations for d = 3 give an exponent for (S)v) in
rough agreement with d obtained from node counting.
The behavior of (R&) is harder to fit by a simple
power law. However, a fit by the form (Rz)—V' 3f (NV &), where f is a scaling function, for
different tree sizes Vgives (R~) —N 44 —+OO4. The al-
ternate prediction (R&) —N / is definitely ruled out
by our data in both two and three dimensions.

We describe below a theoretical model to explain
these results. The average number of sites in a side
branch in an ET increases with the distance from the
origin. Side branches tend to trap the random-walking
ant and decrease its mean-square displacement at large
times. Larger side branches have longer average trap-
ping times and lead to an effective diffusion constant
which decreases as a negative power of R for large R.
Thus the trapping effect in the side branches leads to a
nontrivial exponent for the mean-square displacement.
(Such an effect in the presence of external fields has
been studied earlier. )

Consider a continuous-time version of the random
walk by an ant starting at the origin, with unit transi-
tion probability per unit time for each pair of occupied
neighboring sites on an ET, and zero otherwise. Let
P (i, t) be the probability that the ant is at site i at time
t. The probabilities satisfy the evolution equation

where the summation over j extends to all nearest
neighbors of i. Let the side branch attached to back-
bone site i at distance R; from the origin have n, sites.
With use of Laplace transformation and elimination of
variables in the side branch, Eq. (5) may be rewritten
fort &&n; as

(1+n; ) BP (i, t)/Bt = X.' [P (j,t) —P (i, t) ]. (6)

The prime restricts the summation to neighbors j of i
that lie on the backbone.

We approximate P(i, t) and n; by their mean values
P(R, t) and nI(, respectively. (A more detailed theory
could take into account spatial fluctuations, and the
distribution of number of sites in the side branches. ' )
An ET is not homogeneous, and n~ depends on R.
We assume that nz —R, where 0~0. Since the
number of sites in the backbone as well as side
branches within a distance R from the origin varies as
R", the number of sites in the backbone within a dis-
tance R varies as R~ ~: The backbone has the Haus-
dorff dimension d = d —0. Substituting the power-law
behavior of n I( into Eq. (6), and taking the continuum
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FIG. 4. N&, the average number of backbone sites at a
distance 8 from the origin, for ET's on a square lattice.

0

limit, yields
(

R P(R, t) = R +' R ' P(R, t),
Bt

' M BR

where the operator in the large round brackets is the
Laplacian operator on the d-dimensional backbone
fractal. By scaling, this implies that the mean distance
traveled by the ant in time t scales as

(R ) r)/(2+())

For a typical long walk, the ant samples only order-one
segments of the backbone. Hence the mean number
of distinct sites visited varies as the number of sites in
one segment of the backbone of length R, and its side
branches:

(S ) r(1+8)/(2+8)

Had a typical walk sampled most of the sites within a
distance (R, ) from the origin, we would have ob-
tained8 (S,) —(R, ) . Note also that the finite-density
constraint 0 ~ d —1 gives us d ~ 2d/(d + 1), in agree-
ment with Witten and Kantor. "

The value of X~, the number of sites in the back-
bone at a distance R from the origin, averaged over
100 two-dimensional trees of approximate size 10000
is plotted as a function of R in Fig. 4, from which the
exponent 0= 0.54+0.04 is obtained (0= —, seems to
be a good mnemonic). This value of 0 is also con-
sistent with the exponents for (R)v) and (S)v) ob-
served in the Monte Carlo simulations (cf. Fig. 3).

For ET's on the triangular lattice, the spectral
dimension that we obtain is very close to the value
seen for the square lattice. Presumably, the problems
belong to the same universality class. On the other
hand, Eden clusters with loops (obtained by allowing a
perimeter site to neighbor two, but not three, perime-
ter sites), however, have the expected dimension
d =d.
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