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Observation of Surface Melting
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lon shadowing and blocking measurements show that the solid-liquid transition at the (110) sur-
face of lead starts at approximately 40 K below the bulk melting point of lead T . The thickness of
the liquid surface film increases dramatically as the temperature approaches T .

PACS numbers: 64.70.Dv, 61.80.Mk, 68.20.+t

Melting is one of the best known phase transitions.
For many physical properties of materials the changes
upon melting are well understood. Yet the detailed
description of the solid-liquid transition on an atomic
scale is still a matter of considerable debate. One of
the mysteries connected with melting is that under
normal conditions superheating of a solid above its
melting point is not observed, ' whereas undercooling
of liquids is. A possible explanation for this is that the
surface of a solid might already liquify below the bulk
melting temperature T . As early as 1910 Lin-
dernann made the observation that a solid melts when
the vibration amplitude of its atoms reaches a critical
fraction ( —10'/o) of the nearest-neighbor distance.
This could imply that for surface atoms, as they have a
higher vibration amplitude than bulk atoms, the melt-
ing condition is met at a temperature below the bulk
melting point. At T the wet surface would then be a
vast nucleation center for bulk melting, and superheat-
ing would be precluded. Recent theoretical studies
and computer experiments have indeed indicated a
surface-melting-point depression, but laboratory ex-
periments on real crystals have so far been incon-
clusive. 6

In this Letter we report the first direct observation
of a reversible melting transition of the surface of a
three-dimensional crystal. Temperature-dependent
ion-scattering measurements on an atomically clean
Pb(110) surface reveal the presence of a liquid surface
film on top of, and in equilibrium with, a well ordered
substrate. Surface melting is preceded by a gradual
disordering of the surface region (premelting).

The Pb specimen was spark cut from a single-crystal
lead bar. Chemical polishing produced a mirrorlike
surface, which was cleaned in ultrahigh vacuum by cy-
cles of argon-ion bombardment and annealing ( —1 h
at 590 K), until no impurities were detected with
Auger-electron spectroscopy, and the surface was well
ordered as seen with both LEED and ion channeling.
During the measurements the sample temperature was
continuously monitored by a thermocouple and an in-
frared pyrometer which was carefully calibrated against
the bulk melting point of lead. The accuracy of this
calibration is estimated to be + 0.5 K. The sample was
heated by electron bombardment of the back side of
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FIG. 1. Energy spectra obtained in shadowing, blocking
geometry for (a) a well-ordered crystal surface and (b) a
crystal covered by a liquid surface film.

the sample container. The temperature could be stabi-
lized within +0.3 K.

A parallel 97.5-keV proton beam was aligned with
the [101]axis of the lead crystal. In an ideal static lat-
tice, shadowing would completely protect second and
deeper layer atoms from being hit by protons [Fig.
1(a)]. Because of thermal vibrations, near-surface
atoms also obtain nonzero (but still strongly reduced)
hitting probabilities. An electrostatic energy analzyer
was used to detect backscattered protons emerging
from the crystal parallel to the [011]axis. Blocking of
backscattered protons along this direction further
reduces the backscattering yield from subsurface
atoms. An energy spectrum [Fig. 1(a)] therefore con-
sists of a peak containing the signal from the exposed
surface layers, and a low minimum yield from the
small nonshadowed, nonblocked fraction of deeper
layers, appearing at lower energies because of the stop-
ping of protons in the solid. If the crystal is covered
by a liquid film, coherent shadowing and blocking only
occurs below the liquid-crystal interface [Fig. 1(b)].
All atoms in the liquid film fully contribute to the sur-
face signal, thereby increasing the area and width of
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tion of LEED spots from Pb(110) up to the very melt-
ing point by Goodman and Somorjai has been inter-
preted by these authors as evidence against the pres-
ence of a liquid surface film. The information in their
paper is too limited to decide whether or not they
could actually have observed diffraction features from
the substrate, strongly reduced in intensity by the
liquid overlayer.

SP shapes were used to determine the surface melt-
ing temperature T,. If the difference between the en-
ergy spectrum at T, and each of the higher-
temperature spectra is completely caused by an addi-
tional number of liquid layers at high temperatures, it
should be possible to construct all high-temperature
spectra by addition of a liquid film spectrum to an ac-
cordingly energy-shifted copy of the spectrum at T,
("interface peak"), as shown in Fig. 1(b). Of course
each energy spectrum above T, would do equally well
as interface spectrum, all differences between spectra
above T, being the result of differences in melt depth.
So T, is the lowest temperature for which adding
liquid-film spectra should result in good fits to higher-
temperature spectra. The outlined procedure works
remarkably well with use of the spectra down to about
560 K as interface spectrum, and starts to fail below
this temperature. We therefore identify —560 K as
the surface melting point of Pb(110). The fit to spec-
trum d in Fig. 2 has been produced by addition of the
calculated signal (M) from 16.5 molten lead layers
(including the multiple-scattering contribution at lower
energies caused by this liquid film) to a shifted copy
(I) of spectrum c (561 K). Melt depths obtained in
this way are indicated on the right-hand vertical axis of
Fig. 3.

Figure 3 shows that at 560 K the SP area already
exceeds the value from curve II by 3 monolayers of
lead atoms. As we stated above these atoms are not
contained in a liquid overlayer. Again the SP shape
was used to determine the nature of these extra visible
atoms. For 97.5-keV protons the energy loss observed
along the (110) rows of a well-ordered lead crystal is
enhanced by a factor of —3.5 over the random stop-
ping power (a detailed account of this observation will
be given in a later publication). The width and height
of the SP are therefore very sensitive to the order in
the surface region contributing to the SP. From the
SP shape we have determined the enhanced stopping
power to remain constant up to about 500 K, after
which it gradually reduces to the random value, having
an intermediate value at 560 K. This indicates that the
extra atoms becoming visible between 500 and 560 K
are positioned far out from the (110) rows. As they
are not forming a liquid overlayer these disorderly po-
sitioned atoms are necessarily distributed over a cer-
tain depth interval, and form a transition layer which
could be described either as a defected crystalline layer

(e.g. , dislocations, interstitials, etc.) or as a partially
ordered liquid film.

We now propose the following model for surface
melting. Below 500 K the Pb(110) surface is perfectly
ordered. Above this temperature a transition layer is
formed with the characteristics of a defected solid or a
partially ordered liquid, resulting in 3 additionally visi-
ble lead monolayers at 560 K. Above 560 K this tran-
sition layer becomes buried under a liquid surface film.
As the temperature is further raised towards T, tran-
sition layer and melt front continuously progress into
the bulk.

Our experimental findings are in qualitative agree-
ment with recent theoretical predictions. Using Lan-
dau theory of phase transitions, Lipowsky and Speth'2
have argued that a semi-infinite system undergoing a
first-order transition in the bulk may exhibit critical
behavior at its surface, i.e. , surface quantities behave
continuously although bulk quantities are discontinu-
ous. This theory, when applied to melting, predicts
the liquid film thickness I to diverge as I = Ip
x In[ Tp/(T~ —T)], with constants lp and Tp, as T is
approached from below. Within the accuracy of our
temperature calibration our data are consistent with
such behavior.
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