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Fractal Sandstone Pores: Implications for Conductivity and Pore Formation
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We use scanning electron microscopy and optical data to show that the pore spaces of several
sandstones are fractal geometries and we use the fractal statistics to predict the correct porosity.
Steady-state crystal growth during rock formation is a plausible cause of the self-similar geometry.
The fractal-dimension values and a systematic analysis of rock conductivity data both mediate
against percolation models as suitable models of rock pore-space geometry.

PACS numbers: 91.60.pn, 05.60.+w

We present experimental evidence indicating that
the pore spaces of a set of sandstone samples are frac-
tals' and are self-similar over 3 to 4 orders of magni-

0
tude in length extending from 10 A to over 100 p, m.
The measured values of the fractal dimensions are
greater than those expected for a three-dimensional,
random mixture near the percolation threshold, which
suggests that percolation theory does not describe the
pore-space geometry. The fractal dimension varies
from sample to sample with extreme values of 2.57 to
2.87. This range of values suggests that the pore for-
mation processes do not fall within a single universali-
ty class.

The density-density correlation function of the pore
space is constant over length scales greater than a
characteristic length l2, which is approximately the size
of sand grains in a sandstone (typically 100 p, m
across). For length scales l & l2, we expect the trans-
port coefficients to be constant and characteristic of
the macroscopic properties of the rock. At length
scales I& & l ( l2, we show that the pore-space —rock
interface is a self-similar manifold with a well-defined
fractal dimension, D, and a lower limit of self-
similarity, l &.

We further argue that the pore volume is a fractal
with the same fractal dimension as the pore-rock inter-
face. This conclusion is supported by correctly predict-
ing the porosity from the fractal parameters and by
directly showing that the fractal dimension measured
by autocorrelation of pores on thin sections agrees
with that measured on fracture surfaces.

We also show that self-similar pore-space geometries
can arise naturally from crystal growth in pore spaces
under quasi —steady-state conditions and that the
resulting fractal dimensions can assume a continuous
range of values that depend on chemical kinetic param-
eters. Self-similarity in rock pore spaces leads natural-
ly to an explanation of Archie's law for the conductivi-
ty. We find that the literature conductivity data cannot
be used to draw any conclusions regarding the pres-
ence (or absence) of a percolation threshold.

Measurements of the electrical conductivity of rocks
play an important role in oil and mineral exploration
and production. For many sandstones saturated with

saline solution, the electrical conductivity follows the
empirical Archie formula, 3 o-= o-„@,where o- is the
rock conductivity, o- is the conductivity of the pore
fluid, @ is the porosity, and m is an exponent, which is
traditionally defined by log-log plots of ovs-
Archie's law depends on the geometry of the pore
space, but there exists no detailed understanding of
this relation.

Previous attempts to understand the electrical con-
ductivity of rocks fall in the realm of either effective-
medium theory or percolation theory. Differential
effective-medium models yield expressions for the
conductivity that are power laws in porosity, but these
expressions apply to both self-similar geometries (Ref.
4 suggests that rock-pore spaces may be self-similar)
and other arrangements such as sphere packs. Recent
experiments on sintered-glass sphere packs show that
the measured conductivity is not a power law in poros-
ity. These experiments emphasize the inadequacy of
the effective-medium treatment and of sphere-pack
models for rocks.

We measure fractal parameters on rock fracture sur-
faces utilizing the secondary-electron emission from a
scanning electron microscope (SEM). The structures
we examine lie below the fracture plane so that the
measured parameters do not depend on the fracture
geometry. The SEM measurement defines the fractal
dimension of a one-dimensional section of the pore-
rock interface. At each magnification the structure
detected by the SEM beam along a linear trace is limit-
ed by the microscope resolution; for an isotropic frac-
tal, this resolution limits the depth of field. The SEM
depth of field decreases at increasing magnification
such that it is always smaller than the depth of the rock
interface. There is a one-to-one correspondence
between the secondary-electron-intensity extrema and
the edges that intersect the line defined by the SEM
trace. The SEM measurement, therefore, provides a
count of the number of edge intersections in a one-
dimensional section of the interface as a function of
magnification. We call the protrusions into the pore
space that define these edges geometric features. A
log-log plot of the number of features counted at a
particular magnification versus the length scale gives
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the "volume" of the pore-filling surface is given in
units of lt by 3 (lz/lt), where lt is the lower limit of
the self-similar region, l2 is the upper limit, and 3 is a
constant of order one. Hence, the porosity, @, is sim-
ply
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FIG. 1. A log log plot of the number of geometric
features of size L per unit length vs the size L (in centime-
ters) for Coconino sandstone.

rise to a straight line with slope 2 —D for a one-
dimensional section of an interface with fractal dimen-
sion D (2 & D & 3). Systematic deviations from the
power-law form define the length scales l~ and I2.

Figure 1 is a log-log plot of the number of features
of size L per unit length resolved at a given magnifica-
tion versus the length scale (L) for Coconino sand-
stone, a sandstone originating in Arizona. At short-
length extremes, the data are limited by the micro-
scope resolution of 100 A. At the long-length ex-
tremes, we used optical-microscope data to find that
the linearity on the log-log plot stops at 98 p, m. The
fractal dimension D is given by the slope S = 2 —D of
Fig. 1. For Coconino sandstone D = 2.78.

Our assumption that the sandstone pore space has
the fractal properties of the interface implies a simple
relationship' between the fractal dimension and the
porosity of the rock. In a volume element of size l2,

For all the sandstones we consider, we take 3 =1
and assume that l

&
is a constant on the order of 20 A,

the minimum size of a crystal nucleus in the pore
space. By use of Eq. (I), with I2 ——98 p, m (from opti-
cal autocorrelation data), we find that the calculated
porosity of Coconino sandstone is 10%, in good agree-
ment with our measured values of 10.8% to 12.5% in
various samples.

The analysis of the fractal dimensionality and calcu-
lation of the porosity were applied to four other sand-
stones. The results are shown in Table I. The porosi-
ties in Table I were measured with use of Boyle's law
methods. The uncertainties in the values of D (on the
order of + 0.02) dominate the uncertainties in the cal-
culated porosity values. Successful prediction of the
porosities from the fractal parameters verifies the as-
sumption that the pore surface and volume are fractals
with the same fractal dimension.

The conclusion that the pore volume and pore sur-
face have the same fractal dimension is directly sup-
ported by pore-pore density autocorrelation measure-
ments on thin sections as shown in Fig. 2. There we
compare the autocorrelation function optically mea-
sured on SEM images of polished thin sections with
the slope of the geometric-feature count from a frac-
ture surface on the same rock. For a fractal pore space
we would expect this autocorrelation function to be
proportional to L where L is the lag. At short lags
the autocorrelation function asymptotically approaches
the slope given by the feature count. At large lag the
autocorrelation deviates from the power-law slope as
neighboring uncorrelated pores are sampled. At the
longest lags the homogeneous limit is reached where

TABLE I. Results of SEM measurements on various sandstones.

Sample
Fractal

dimension l2 (p, m)
Porosity (%)

Calculated Measured

Tight gas sand
&965

Tight gas sand
&466

Coconino

Navajo

St. Peter' s

2.57

2.68

2.78

2.81

2.87

2.5

98

50

50

4.7

7.6

10

15

27

5.3-5.6

6.9-7.6
11-12.5

16.4

24-28
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the variance is zero. The length lz is defined by the lag
at which the autocorrelation is constant. The agree-
ment between the autocorrelation function and the
feature count directly shows that the pore-space
volume is a fractal and that it has the same fractal
dimension as the interface.

The fractal structure of the pore space also suggests
that dynamics within the pore space should scale with
the length parameter l. Recent papers find that a ran-
dom walker on a fractal geometry diffuses anomalous-
ly. ~ ' From the Einstein relation, we expect the
conductivity of a rock sample, which is self-similar for
length scales l& & l & lq and homogeneous for length
scales l & lg, to be

CT = 0-„y(it/lz) = o-„@",Z(D —D )/D
(2)

where the second equality follows from Eq. (1) and
n = [D&+D(2 —Df)]/(3 —D)D&. Here o„is the ion--
ic conductivity of the fluid filling the pore space and
Df is the spectral dimension. Equation (2) is con-
sistent with the form of Archie's law.

We next present a simple nucleation and growth
model that can account for a power-law distribution of
feature sizes and is consistent with general constraints
governing rock formation. We emphasize that the
mineral growth that gives rise to features inside the
pore space is very different from dendritic growth.
Sandstone formation involves burial of the sand
grains, compaction, and then alteration of the pore
structure by the flow of fluids through the pore space.
Such alteration involves crystal growth and nucleation
on the pore surface. The rate-limiting steps for both
crystal nucleation and growth of established crystals is

OG (LAG IN MI CRONS)

FIG. 2. A log-log plot of the pore-pore density autocorre-
lation function taken on a quartz cemented sandstone from
eastern Utah. The slope of the straight line was taken from
the feature-size distribution collected on a fracture surface
as in Fig. 1. The autocorrelation data were taken by optical
measurements on SEM images of polished-rock thin sec-
tions. The units of autocorrelation are arbitrary.

the rate of addition of species to growth sites on the
pore surfaces. Diffusion and fluid transport from the
pore volume should be rapid by comparison. The
number of growth sites is not limiting. We formulate
the competing processes of crystal growth and crystal
nucleation in terms of two kinetic equations:

dR/dt = kc",

dN/dt = ktc~.

(3)

(4)

The first equation describes the growth of a crystal
of size R. The second equation describes the hetero-
geneous nucleation of new crystals on a patch of sur-
face of unit linear dimension. Here c is the concentra-
tion of surface molecules and k and k ~ are equilibrium
constants. We expect that n = Il since growth involves
the addition of a single molecule to a growth site and
p & 1 since nucleation requires the coincidence of two
or more molecules at a nucleation site. '

The concentration, c, is a slowly varying function of
time over an interval T that is long compared to a crys-
tal growth time but short relative to geologic time. In
a time interval T we take c to be constant and solve
Eqs. (3) and (4). The ultimate crystal size is limited
by nucleation of new crystals on the rock surface so
that R ~ (dR/dt)/(dN/dt). The total number of nuclei
of size R formed on a surface patch of unit linear
dimension in time T is N(R) = (dN/dt) T. Over times
large compared to T, c increases with time as the pore
space fills and as fluid-flow rates decrease. (Note that
this time-dependent c is an essential difference
between this model and many others involving nu-
cleation and growth. ) Since c increases and p & 1, the
equations for R and N(R) indicate that R decreases
with time and N(R) increases; i.e., the number of
small crystals increases in time. Combination of the
expressions for R and N(R) yields

N(R) R (5)
Classical nucleation theory requires that p & 2 so that
2 ~p/(p —1). Moreover, the imposition that the
volume of the particles formed does not exceed the
available volume requires that 2 ~p/(p —1) ~ 3.

This model provides one possible deterministic
model for fractal crystal growth in rocks and is a
mechanism capable ofproducing fractal pore spaces with a
continuous range of' dimensionalities. It also supports
our empirical observation that l~ is of order 20 A, the
size of a crystal nucleus, and limits the fractal dimen-
sion to lie between 2 and 3.

Several authors have used the apparent lack of a per-
colation threshold in sedimentary rocks ~ as a signifi-
cant clue toward understanding the transport proper-
ties. We find, however, that Archie's law can follow
directly from the self-similar nature of a specific pore
geometry for even the lowest porosities. The
Archie's-law form of the conductivity with a well-

1327



VOLUME 54, NUMBER 12 PHYSICAL REVIEW LETTERS 25 MARCH 1985

defined exponent is predictable only for a particular
geometry. In general, each rock-pore geometry will
yield an exponent different from all other rocks. The
conductivity exponent must then be determined on a
rock-by-rock basis since neither D nor Df takes on a
universal value for all sandstones. When Archie's law
is applied to literature sandstone data one sample at a
time, we find that 1.5 & I & 2.5 in contrast to the
literature values, which range from 0.5 to 5. The prac-
tice of representing conductivity data by a power law
with zero percolation threshold then makes no sense:
We cannot draw conclusions about the transport prop-
erties of one rock from those of another with a dif-
ferent pore geometry.

We thank C. E. Krohn for use of her data before
publication and S. C. Eno for assistance with the auto-
correlation measurement.
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